Show simple item record

dc.contributor.authorGaleano Gómez, Esteban
dc.contributor.authorArrobas Barroso, Arthur
dc.contributor.authorVasconcelos, Tarsicio
dc.contributor.authorLópez Rubio, Andrés
dc.contributor.authorAlbrecht, AJP
dc.contributor.authorFilho R., Victoria
dc.contributor.authorCarrer, Helaine
dc.date.accessioned2021-04-29T13:06:27Z
dc.date.available2021-04-29T13:06:27Z
dc.date.issued2016
dc.identifier.issn1676-5680
dc.identifier.urihttps://dspace.tdea.edu.co/handle/tdea/1197
dc.description.abstractWeed resistance to herbicides is a natural phenomenon that exerts selection on individuals in a population. In Brazil, glyphosate resistance was recently detected in Digitaria insularis. The objective of this study was to elucidate mechanisms of weed resistance in this plant, including genetic variability, allelism, amino acid substitutions, gene expression, and enzymatic activity levels. Most of these have not previously been studied in this species. D. insularis DNA sequences were used to analyze genetic variability. cDNA from resistant and susceptible plants was used to identify mutations, alleles, and 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) expression, using real-time quantitative reverse transcription-polymerase chain reaction. In addition, EPSPS activity was measured. We found a decrease in genetic variability between populations related to glyphosate application. Substitutions from proline to threonine and tyrosine to cysteine led to a decrease in EPSPS affinity for the glyphosate. In addition, the EPSPS enzymatic activity was slightly higher in resistant plants, whereas EPSPS gene expression was almost identical in both biotypes, suggesting feedback regulation at different levels. To conclude, our results suggest new molecular mechanisms used by D. insularis to increase glyphosate resistance.spa
dc.format.extent15 p.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisher[Ribeirao Preto, SP Brasil]: FUNPECspa
dc.rights.urihttps://creativecommons.org/licenses/by-sa/4.0/spa
dc.source10.4238 / gmr.15038730spa
dc.titleEPSPS variability, gene expression, and enzymatic activity in glyphosate-resistant biotypes of Digitaria insularisspa
dc.typeArtículo de revistaspa
dcterms.referencesBaerson SR, Tran M and Brinker R (2000). Characterization of a glyphosate-resistant Eleusine indica biotype from Malaysia. In: International Weed Control Congress. International Weed Science Society, Bangkok, 150.spa
dcterms.referencesBaerson SR, Rodriguez DJ, Biest N, Tran M, et al. (2002a). Investigating the mechanism of glyphosate resistance in rigid ryegrass (Lolium ridigum). Weed Sci. 50: 721-730. http://dx.doi.org/10.1614/0043-1745(2002)050[0721:ITMOGR ]2.0.CO;2spa
dcterms.referencesBaerson SR, Rodriguez DJ, Tran M, Feng Y, et al. (2002b). Glyphosate-resistant goosegrass. Identification of a mutation in the target enzyme 5-enolpyruvylshikimate-3-phosphate synthase. Plant Physiol. 129: 1265-1275. http://dx.doi. org/10.1104/pp.001560spa
dcterms.referencesBarbazuk WB, Fu Y and McGinnis KM (2008). Genome-wide analyses of alternative splicing in plants: opportunities and challenges. Genome Res. 18: 1381-1392. http://dx.doi.org/10.1101/gr.053678.106spa
dcterms.referencesBarroso AAM, Galeano E, Albrecht AJP, dos Reis FC, et al. (2015). Does sourgrass leaf anatomy influence glyphosate resistance? Comun. Sci. 6: 445-453. http://dx.doi.org/10.14295/cs.v6i4.1124spa
dcterms.referencesBouchenak-Khelladi Y, Salamin N, Savolainen V, Forest F, et al. (2008). Large multi-gene phylogenetic trees of the grasses (Poaceae): progress towards complete tribal and generic level sampling. Mol. Phylogenet. Evol. 47: 488-505. http://dx.doi.org/10.1016/j.ympev.2008.01.035spa
dcterms.referencesBradford MM (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. http://dx.doi.org/10.1016/0003-2697(76)90527-3spa
dcterms.referencesCarvalho LB, Bianco MS and Bianco S (2013). Accumulation of dry mass and macronutrients by sourgrass plants. Planta Daninha 31: 785-792. http://dx.doi.org/10.1590/S0100-83582013000400004spa
dcterms.referencesChandi A, Milla-Lewis SR, Giacomini D, Westra P, et al. (2012). Inheritance of evolved glyphosate resistance in a North Carolina palmer amaranth (Amaranthus palmeri) biotype. Int. J. Agron. 2012: 1-7.spa
dcterms.referencesde Carvalho LB, Cruz-Hipolito H, González-Torralva F, Alves PLCA, et al. (2011). Detection of sourgrass (Digitaria insularis) biotypes resistant to glyphosate in Brazil. Weed Sci. 59: 171-176. http://dx.doi.org/10.1614/WS-D-10- 00113.1spa
dcterms.referencesde Carvalho LB, Alves PL, González-Torralva F, Cruz-Hipolito HE, et al. (2012). Pool of resistance mechanisms to glyphosate in Digitaria insularis. J. Agric. Food Chem. 60: 615-622. http://dx.doi.org/10.1021/jf204089dspa
dcterms.referencesDe Mendoça GS, Martins CC, Martins D and da Costa NV (2014). Ecophysiology of seed germination in Digitaria insularis ((L.) Fedde). Rev. Cienc. Agr. Agron. 45: 823-832. http://dx.doi.org/10.1590/S1806-66902014000400021spa
dcterms.referencesDinelli G, Marotti I, Catizone P, Bonetti A, et al. (2008). Physiological and molecular basis of glyphosate resistance in C. bonariensis (L.) Cronq. biotypes from Spain. Weed Res. 48: 257-265. http://dx.doi.org/10.1111/j.1365- 3180.2008.00623.xspa
dcterms.referencesDoyle JJ and Doyle JL (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19: 11-15.spa
dcterms.referencesDvořková H, Fér T and Marhold K (2010). Phylogeographic pattern of the European forest grass species Hordelymus europaeus: cpDNA evidence. Flora Morphol. Distrib. Funct. Ecol. Plants 205: 418-423. http://dx.doi.org/10.1016/j. flora.2009.12.029spa
dcterms.referencesEdwards EJ and Smith SA (2010). Phylogenetic analyses reveal the shady history of C4 grasses. Proc. Natl. Acad. Sci. USA 107: 2532-2537. http://dx.doi.org/10.1073/pnas.0909672107spa
dcterms.referencesFinn RD, Bateman A, Clements J, Coggill P, et al. (2014). Pfam: the protein families database. Nucleic Acids Res. 42: D222-D230. http://dx.doi.org/10.1093/nar/gkt1223spa
dcterms.referencesForlani G, Parisi B and Nielsen E (1994). 5-enol-pyruvyl-shikimate-3-phosphate synthase from Zea mays cultured cells (purification and properties). Plant Physiol. 105: 1107-1114.spa
dcterms.referencesFranz JE, Mao MK and Sikorski JA (1997). Glyphosate: a unique global herbicide. The University of Virginia, Charlottesville.spa
dcterms.referencesGaines TA, Wright AA, Molin WT, Lorentz L, et al. (2013). Identification of genetic elements associated with EPSPs gene amplification. PLoS One 8: e65819. http://dx.doi.org/10.1371/journal.pone.0065819spa
dcterms.referencesGasteiger E, Gattiker A, Hoogland C, Ivanyi I, et al. (2003). ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res. 31: 3784-3788. http://dx.doi.org/10.1093/nar/gkg563spa
dcterms.referencesGe X, d’Avignon DA, Ackerman JJ and Sammons RD (2010). Rapid vacuolar sequestration: the horseweed glyphosate resistance mechanism. Pest Manag. Sci. 66: 345-348spa
dcterms.referencesGemelli A, Oliveira RS, Junior., Constantin J, Pereira Braz GB, et al. (2012). Aspectos da biologia de Digitaria insularis resistente ao glyphosate e implicações para o seu controle. Rev. Bras. Herbic. 11: 231-240.spa
dcterms.referencesGiacomini D, Westra P and Ward SM (2014). Impact of genetic background in fitness cost studies: An example from glyphosate-resistant palmer amaranth. Weed Sci. 62: 29-37. http://dx.doi.org/10.1614/WS-D-13-00066.1spa
dcterms.referencesHall T (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/ NT. Nucleic Acids Symp. Ser. 41: 95-98spa
dcterms.referencesKahrizi D, Salmanian AH, Afshari A, Moieni A, et al. (2007). Simultaneous substitution of Gly96 to Ala and Ala183 to Thr in 5-enolpyruvylshikimate-3-phosphate synthase gene of E. coli (k12) and transformation of rapeseed (Brassica napus L.) in order to make tolerance to glyphosate. Plant Cell Rep. 26: 95-104. http://dx.doi.org/10.1007/s00299- 006-0208-4spa
dcterms.referencesKimura M (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111-120. http://dx.doi.org/10.1007/BF01731581spa
dcterms.referencesLanzetta PA, Alvarez LJ, Reinach PS and Candia OA (1979). An improved assay for nanomole amounts of inorganic phosphate. Anal. Biochem. 100: 95-97. http://dx.doi.org/10.1016/0003-2697(79)90115-5spa
dcterms.referencesLarkin MA, Blackshields G, Brown NP, Chenna R, et al. (2007). Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947-2948. http://dx.doi.org/10.1093/bioinformatics/btm404spa
dcterms.referencesLiu F and Cao YP (2015). Cloning and characterization of 5-enopyruvylshikimate-3-phosphate synthase from Pantoea sp. Genet. Mol. Res. 14: 19233-19241. http://dx.doi.org/10.4238/2015.December.29.33spa
dcterms.referencesLiu Y, Yang SX, Ji PZ and Gao LZ (2012). Phylogeography of Camellia taliensis (Theaceae) inferred from chloroplast and nuclear DNA: insights into evolutionary history and conservation. BMC Evol. Biol. 12: 92. http://dx.doi. org/10.1186/1471-2148-12-92spa
dcterms.referencesMachado AFL, Ferreira LR, Ferreira FA, Fialho CMT, et al. (2006). Análise de crescimento de Digitaria insularis. Planta Daninha 24: 641-647. http://dx.doi.org/10.1590/S0100-83582006000400004spa
dcterms.referencesMachado AFL, Meira RMS, Ferreira LR, Ferreira FA, et al. (2008). Caracterização anatômica de folha, colmo e rizoma de Digitaria insularis. Planta Daninha 26: 1-8. http://dx.doi.org/10.1590/S0100-83582008000100001spa
dcterms.referencesManalil S, Busi R, Renton M and Powles SB (2011). Rapid evolution of herbicide resistance by low herbicide dosages. Weed Sci. 59: 210-217. http://dx.doi.org/10.1614/WS-D-10-00111.1spa
dcterms.referencesMondo VHV, Carvalho SJP, Dias ACR and Marcos Filho J (2010). Efeitos da luz e temperatura na germinação de sementes de quatro espécies de plantas daninhas do gênero Digitaria. Rev. Bras. Sementes 32: 131-137. http://dx.doi. org/10.1590/S0101-31222010000100015spa
dcterms.referencesNandula VK, Ray JD, Ribeiro DN, Pan Z, et al. (2013). Glyphosate resistance in tall waterhemp (Amaranthus tuberculatus) from Mississippi is due to both altered target-site and nontarget-site mechanisms. Weed Sci. 61: 374-383. http:// dx.doi.org/10.1614/WS-D-12-00155.1spa
dcterms.referencesPerez-Jones A, Park KW, Polge N, Colquhoun J, et al. (2007). Investigating the mechanisms of glyphosate resistance in Lolium multiflorum. Planta 226: 395-404. http://dx.doi.org/10.1007/s00425-007-0490-6spa
dcterms.referencesPreston C and Wakelin AM (2008). Resistance to glyphosate from altered herbicide translocation patterns. Pest Manag. Sci. 64: 372-376. http://dx.doi.org/10.1002/ps.1489spa
dcterms.referencesSalas RA, Dayan FE, Pan Z, Watson SB, et al. (2012). EPSPS gene amplification in glyphosate-resistant Italian ryegrass (Lolium perenne ssp. multiflorum) from Arkansas. Pest Manag. Sci. 68: 1223-1230. http://dx.doi.org/10.1002/ ps.3342spa
dcterms.referencesShaner DL, Lindenmeyer RB and Ostlie MH (2012). What have the mechanisms of resistance to glyphosate taught us? Pest Manag. Sci. 68: 3-9. http://dx.doi.org/10.1002/ps.2261spa
dcterms.referencesShimono Y, Kurokawa S, Nishida T, Ikeda H, et al. (2013). Phylogeography based on intraspecific sequence variation in chloroplast DNA of Miscanthus sinensis (Poaceae), a native pioneer grass in Japan. Botany 91: 449-456. http:// dx.doi.org/10.1139/cjb-2012-0212spa
dcterms.referencesUmesha S (2006). Phenylalanine ammonia lyase activity in tomato seedlings and its relationship to bacterial canker disease resistance. Phytoparasitica 34: 68-71. http://dx.doi.org/10.1007/BF02981341spa
dcterms.referencesVila-Aiub MM, Neve P and Powles SB (2009). Fitness costs associated with evolved herbicide resistance alleles in plants. New Phytol. 184: 751-767. http://dx.doi.org/10.1111/j.1469-8137.2009.03055.xspa
dcterms.referencesWang W, Xia H, Yang X, Xu T, et al. (2014). A novel 5-enolpyruvoylshikimate-3-phosphate (EPSP) synthase transgene for glyphosate resistance stimulates growth and fecundity in weedy rice (Oryza sativa) without herbicide. New Phytol. 202: 679-688. http://dx.doi.org/10.1111/nph.12428spa
dcterms.referencesWoodburn AT (2000). Glyphosate: production, pricing and use worldwide. Pest Manag. Sci. 56: 309-312. http://dx.doi. org/10.1002/(SICI)1526-4998(200004)56:4<309::AID-PS143>3.0.CO;2-Cspa
dcterms.referencesYu Q, Cairns A and Powles S (2007). Glyphosate, paraquat and ACCase multiple herbicide resistance evolved in a Lolium rigidum biotype. Planta 225: 499-513. http://dx.doi.org/10.1007/s00425-006-0364-3spa
dc.coverage.countryBrasil
dc.publisher.placeBrasilspa
dc.relation.citationendpage15spa
dc.relation.citationissue3spa
dc.relation.citationstartpage1spa
dc.relation.citationvolume15spa
dc.relation.ispartofjournalGenetics and Molecular Researchspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-CompartirIgual 4.0 Internacional (CC BY-SA 4.0)spa
dc.subject.agrovocGenetic variation
dc.subject.agrovocGene expression
dc.subject.agrovocEnzyme activity
dc.subject.agrovocurihttp://aims.fao.org/aos/agrovoc/c_15975
dc.subject.agrovocurihttp://aims.fao.org/aos/agrovoc/c_27527
dc.subject.agrovocurihttp://aims.fao.org/aos/agrovoc/c_2604
dc.subject.proposalWeed resistancespa
dc.subject.proposalAmino acid substitutionspa
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.relation.citationeditionGenetics and Molecular Research . 15(3), pág. 1-15, 2016spa


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

https://creativecommons.org/licenses/by-sa/4.0/
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by-sa/4.0/