Publicación: EPSPS variability, gene expression, and enzymatic activity in glyphosate-resistant biotypes of Digitaria insularis
dc.contributor.author | Galeano Gómez, Esteban | |
dc.contributor.author | Arrobas Barroso, Arthur | |
dc.contributor.author | Vasconcelos, Tarsicio | |
dc.contributor.author | López Rubio, Andrés | |
dc.contributor.author | Albrecht, AJP | |
dc.contributor.author | Filho R., Victoria | |
dc.contributor.author | Carrer, Helaine | |
dc.coverage.country | Brasil | |
dc.date.accessioned | 2021-04-29T13:06:27Z | |
dc.date.available | 2021-04-29T13:06:27Z | |
dc.date.issued | 2016 | |
dc.description.abstract | Weed resistance to herbicides is a natural phenomenon that exerts selection on individuals in a population. In Brazil, glyphosate resistance was recently detected in Digitaria insularis. The objective of this study was to elucidate mechanisms of weed resistance in this plant, including genetic variability, allelism, amino acid substitutions, gene expression, and enzymatic activity levels. Most of these have not previously been studied in this species. D. insularis DNA sequences were used to analyze genetic variability. cDNA from resistant and susceptible plants was used to identify mutations, alleles, and 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) expression, using real-time quantitative reverse transcription-polymerase chain reaction. In addition, EPSPS activity was measured. We found a decrease in genetic variability between populations related to glyphosate application. Substitutions from proline to threonine and tyrosine to cysteine led to a decrease in EPSPS affinity for the glyphosate. In addition, the EPSPS enzymatic activity was slightly higher in resistant plants, whereas EPSPS gene expression was almost identical in both biotypes, suggesting feedback regulation at different levels. To conclude, our results suggest new molecular mechanisms used by D. insularis to increase glyphosate resistance. | spa |
dc.format.extent | 15 p. | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.issn | 1676-5680 | |
dc.identifier.uri | https://dspace.tdea.edu.co/handle/tdea/1197 | |
dc.language.iso | eng | spa |
dc.publisher | [Ribeirao Preto, SP Brasil]: FUNPEC | spa |
dc.publisher.place | Brasil | spa |
dc.relation.citationedition | Genetics and Molecular Research . 15(3), pág. 1-15, 2016 | spa |
dc.relation.citationendpage | 15 | spa |
dc.relation.citationissue | 3 | spa |
dc.relation.citationstartpage | 1 | spa |
dc.relation.citationvolume | 15 | spa |
dc.relation.ispartofjournal | Genetics and Molecular Research | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución-CompartirIgual 4.0 Internacional (CC BY-SA 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-sa/4.0/ | spa |
dc.source | 10.4238 / gmr.15038730 | spa |
dc.subject.agrovoc | Genetic variation | |
dc.subject.agrovoc | Gene expression | |
dc.subject.agrovoc | Enzyme activity | |
dc.subject.agrovocuri | http://aims.fao.org/aos/agrovoc/c_15975 | |
dc.subject.agrovocuri | http://aims.fao.org/aos/agrovoc/c_27527 | |
dc.subject.agrovocuri | http://aims.fao.org/aos/agrovoc/c_2604 | |
dc.subject.proposal | Weed resistance | spa |
dc.subject.proposal | Amino acid substitution | spa |
dc.title | EPSPS variability, gene expression, and enzymatic activity in glyphosate-resistant biotypes of Digitaria insularis | spa |
dc.type | Artículo de revista | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |
dcterms.references | Baerson SR, Tran M and Brinker R (2000). Characterization of a glyphosate-resistant Eleusine indica biotype from Malaysia. In: International Weed Control Congress. International Weed Science Society, Bangkok, 150. | spa |
dcterms.references | Baerson SR, Rodriguez DJ, Biest N, Tran M, et al. (2002a). Investigating the mechanism of glyphosate resistance in rigid ryegrass (Lolium ridigum). Weed Sci. 50: 721-730. http://dx.doi.org/10.1614/0043-1745(2002)050[0721:ITMOGR ]2.0.CO;2 | spa |
dcterms.references | Baerson SR, Rodriguez DJ, Tran M, Feng Y, et al. (2002b). Glyphosate-resistant goosegrass. Identification of a mutation in the target enzyme 5-enolpyruvylshikimate-3-phosphate synthase. Plant Physiol. 129: 1265-1275. http://dx.doi. org/10.1104/pp.001560 | spa |
dcterms.references | Barbazuk WB, Fu Y and McGinnis KM (2008). Genome-wide analyses of alternative splicing in plants: opportunities and challenges. Genome Res. 18: 1381-1392. http://dx.doi.org/10.1101/gr.053678.106 | spa |
dcterms.references | Barroso AAM, Galeano E, Albrecht AJP, dos Reis FC, et al. (2015). Does sourgrass leaf anatomy influence glyphosate resistance? Comun. Sci. 6: 445-453. http://dx.doi.org/10.14295/cs.v6i4.1124 | spa |
dcterms.references | Bouchenak-Khelladi Y, Salamin N, Savolainen V, Forest F, et al. (2008). Large multi-gene phylogenetic trees of the grasses (Poaceae): progress towards complete tribal and generic level sampling. Mol. Phylogenet. Evol. 47: 488-505. http://dx.doi.org/10.1016/j.ympev.2008.01.035 | spa |
dcterms.references | Bradford MM (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. http://dx.doi.org/10.1016/0003-2697(76)90527-3 | spa |
dcterms.references | Carvalho LB, Bianco MS and Bianco S (2013). Accumulation of dry mass and macronutrients by sourgrass plants. Planta Daninha 31: 785-792. http://dx.doi.org/10.1590/S0100-83582013000400004 | spa |
dcterms.references | Chandi A, Milla-Lewis SR, Giacomini D, Westra P, et al. (2012). Inheritance of evolved glyphosate resistance in a North Carolina palmer amaranth (Amaranthus palmeri) biotype. Int. J. Agron. 2012: 1-7. | spa |
dcterms.references | de Carvalho LB, Cruz-Hipolito H, González-Torralva F, Alves PLCA, et al. (2011). Detection of sourgrass (Digitaria insularis) biotypes resistant to glyphosate in Brazil. Weed Sci. 59: 171-176. http://dx.doi.org/10.1614/WS-D-10- 00113.1 | spa |
dcterms.references | de Carvalho LB, Alves PL, González-Torralva F, Cruz-Hipolito HE, et al. (2012). Pool of resistance mechanisms to glyphosate in Digitaria insularis. J. Agric. Food Chem. 60: 615-622. http://dx.doi.org/10.1021/jf204089d | spa |
dcterms.references | De Mendoça GS, Martins CC, Martins D and da Costa NV (2014). Ecophysiology of seed germination in Digitaria insularis ((L.) Fedde). Rev. Cienc. Agr. Agron. 45: 823-832. http://dx.doi.org/10.1590/S1806-66902014000400021 | spa |
dcterms.references | Dinelli G, Marotti I, Catizone P, Bonetti A, et al. (2008). Physiological and molecular basis of glyphosate resistance in C. bonariensis (L.) Cronq. biotypes from Spain. Weed Res. 48: 257-265. http://dx.doi.org/10.1111/j.1365- 3180.2008.00623.x | spa |
dcterms.references | Doyle JJ and Doyle JL (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19: 11-15. | spa |
dcterms.references | Dvořková H, Fér T and Marhold K (2010). Phylogeographic pattern of the European forest grass species Hordelymus europaeus: cpDNA evidence. Flora Morphol. Distrib. Funct. Ecol. Plants 205: 418-423. http://dx.doi.org/10.1016/j. flora.2009.12.029 | spa |
dcterms.references | Edwards EJ and Smith SA (2010). Phylogenetic analyses reveal the shady history of C4 grasses. Proc. Natl. Acad. Sci. USA 107: 2532-2537. http://dx.doi.org/10.1073/pnas.0909672107 | spa |
dcterms.references | Finn RD, Bateman A, Clements J, Coggill P, et al. (2014). Pfam: the protein families database. Nucleic Acids Res. 42: D222-D230. http://dx.doi.org/10.1093/nar/gkt1223 | spa |
dcterms.references | Forlani G, Parisi B and Nielsen E (1994). 5-enol-pyruvyl-shikimate-3-phosphate synthase from Zea mays cultured cells (purification and properties). Plant Physiol. 105: 1107-1114. | spa |
dcterms.references | Franz JE, Mao MK and Sikorski JA (1997). Glyphosate: a unique global herbicide. The University of Virginia, Charlottesville. | spa |
dcterms.references | Gaines TA, Wright AA, Molin WT, Lorentz L, et al. (2013). Identification of genetic elements associated with EPSPs gene amplification. PLoS One 8: e65819. http://dx.doi.org/10.1371/journal.pone.0065819 | spa |
dcterms.references | Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, et al. (2003). ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res. 31: 3784-3788. http://dx.doi.org/10.1093/nar/gkg563 | spa |
dcterms.references | Ge X, d’Avignon DA, Ackerman JJ and Sammons RD (2010). Rapid vacuolar sequestration: the horseweed glyphosate resistance mechanism. Pest Manag. Sci. 66: 345-348 | spa |
dcterms.references | Gemelli A, Oliveira RS, Junior., Constantin J, Pereira Braz GB, et al. (2012). Aspectos da biologia de Digitaria insularis resistente ao glyphosate e implicações para o seu controle. Rev. Bras. Herbic. 11: 231-240. | spa |
dcterms.references | Giacomini D, Westra P and Ward SM (2014). Impact of genetic background in fitness cost studies: An example from glyphosate-resistant palmer amaranth. Weed Sci. 62: 29-37. http://dx.doi.org/10.1614/WS-D-13-00066.1 | spa |
dcterms.references | Hall T (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/ NT. Nucleic Acids Symp. Ser. 41: 95-98 | spa |
dcterms.references | Kahrizi D, Salmanian AH, Afshari A, Moieni A, et al. (2007). Simultaneous substitution of Gly96 to Ala and Ala183 to Thr in 5-enolpyruvylshikimate-3-phosphate synthase gene of E. coli (k12) and transformation of rapeseed (Brassica napus L.) in order to make tolerance to glyphosate. Plant Cell Rep. 26: 95-104. http://dx.doi.org/10.1007/s00299- 006-0208-4 | spa |
dcterms.references | Kimura M (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111-120. http://dx.doi.org/10.1007/BF01731581 | spa |
dcterms.references | Lanzetta PA, Alvarez LJ, Reinach PS and Candia OA (1979). An improved assay for nanomole amounts of inorganic phosphate. Anal. Biochem. 100: 95-97. http://dx.doi.org/10.1016/0003-2697(79)90115-5 | spa |
dcterms.references | Larkin MA, Blackshields G, Brown NP, Chenna R, et al. (2007). Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947-2948. http://dx.doi.org/10.1093/bioinformatics/btm404 | spa |
dcterms.references | Liu F and Cao YP (2015). Cloning and characterization of 5-enopyruvylshikimate-3-phosphate synthase from Pantoea sp. Genet. Mol. Res. 14: 19233-19241. http://dx.doi.org/10.4238/2015.December.29.33 | spa |
dcterms.references | Liu Y, Yang SX, Ji PZ and Gao LZ (2012). Phylogeography of Camellia taliensis (Theaceae) inferred from chloroplast and nuclear DNA: insights into evolutionary history and conservation. BMC Evol. Biol. 12: 92. http://dx.doi. org/10.1186/1471-2148-12-92 | spa |
dcterms.references | Machado AFL, Ferreira LR, Ferreira FA, Fialho CMT, et al. (2006). Análise de crescimento de Digitaria insularis. Planta Daninha 24: 641-647. http://dx.doi.org/10.1590/S0100-83582006000400004 | spa |
dcterms.references | Machado AFL, Meira RMS, Ferreira LR, Ferreira FA, et al. (2008). Caracterização anatômica de folha, colmo e rizoma de Digitaria insularis. Planta Daninha 26: 1-8. http://dx.doi.org/10.1590/S0100-83582008000100001 | spa |
dcterms.references | Manalil S, Busi R, Renton M and Powles SB (2011). Rapid evolution of herbicide resistance by low herbicide dosages. Weed Sci. 59: 210-217. http://dx.doi.org/10.1614/WS-D-10-00111.1 | spa |
dcterms.references | Mondo VHV, Carvalho SJP, Dias ACR and Marcos Filho J (2010). Efeitos da luz e temperatura na germinação de sementes de quatro espécies de plantas daninhas do gênero Digitaria. Rev. Bras. Sementes 32: 131-137. http://dx.doi. org/10.1590/S0101-31222010000100015 | spa |
dcterms.references | Nandula VK, Ray JD, Ribeiro DN, Pan Z, et al. (2013). Glyphosate resistance in tall waterhemp (Amaranthus tuberculatus) from Mississippi is due to both altered target-site and nontarget-site mechanisms. Weed Sci. 61: 374-383. http:// dx.doi.org/10.1614/WS-D-12-00155.1 | spa |
dcterms.references | Perez-Jones A, Park KW, Polge N, Colquhoun J, et al. (2007). Investigating the mechanisms of glyphosate resistance in Lolium multiflorum. Planta 226: 395-404. http://dx.doi.org/10.1007/s00425-007-0490-6 | spa |
dcterms.references | Preston C and Wakelin AM (2008). Resistance to glyphosate from altered herbicide translocation patterns. Pest Manag. Sci. 64: 372-376. http://dx.doi.org/10.1002/ps.1489 | spa |
dcterms.references | Salas RA, Dayan FE, Pan Z, Watson SB, et al. (2012). EPSPS gene amplification in glyphosate-resistant Italian ryegrass (Lolium perenne ssp. multiflorum) from Arkansas. Pest Manag. Sci. 68: 1223-1230. http://dx.doi.org/10.1002/ ps.3342 | spa |
dcterms.references | Shaner DL, Lindenmeyer RB and Ostlie MH (2012). What have the mechanisms of resistance to glyphosate taught us? Pest Manag. Sci. 68: 3-9. http://dx.doi.org/10.1002/ps.2261 | spa |
dcterms.references | Shimono Y, Kurokawa S, Nishida T, Ikeda H, et al. (2013). Phylogeography based on intraspecific sequence variation in chloroplast DNA of Miscanthus sinensis (Poaceae), a native pioneer grass in Japan. Botany 91: 449-456. http:// dx.doi.org/10.1139/cjb-2012-0212 | spa |
dcterms.references | Umesha S (2006). Phenylalanine ammonia lyase activity in tomato seedlings and its relationship to bacterial canker disease resistance. Phytoparasitica 34: 68-71. http://dx.doi.org/10.1007/BF02981341 | spa |
dcterms.references | Vila-Aiub MM, Neve P and Powles SB (2009). Fitness costs associated with evolved herbicide resistance alleles in plants. New Phytol. 184: 751-767. http://dx.doi.org/10.1111/j.1469-8137.2009.03055.x | spa |
dcterms.references | Wang W, Xia H, Yang X, Xu T, et al. (2014). A novel 5-enolpyruvoylshikimate-3-phosphate (EPSP) synthase transgene for glyphosate resistance stimulates growth and fecundity in weedy rice (Oryza sativa) without herbicide. New Phytol. 202: 679-688. http://dx.doi.org/10.1111/nph.12428 | spa |
dcterms.references | Woodburn AT (2000). Glyphosate: production, pricing and use worldwide. Pest Manag. Sci. 56: 309-312. http://dx.doi. org/10.1002/(SICI)1526-4998(200004)56:4<309::AID-PS143>3.0.CO;2-C | spa |
dcterms.references | Yu Q, Cairns A and Powles S (2007). Glyphosate, paraquat and ACCase multiple herbicide resistance evolved in a Lolium rigidum biotype. Planta 225: 499-513. http://dx.doi.org/10.1007/s00425-006-0364-3 | spa |
dspace.entity.type | Publication | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |