Mostrar el registro sencillo del ítem

dc.contributor.advisorRubio Clemente, Ainhoa
dc.contributor.authorPrésiga López, Deiby Andrés
dc.date.accessioned2021-03-09T20:14:30Z
dc.date.available2021-03-09T20:14:30Z
dc.date.issued2020-08-28
dc.identifier.urihttps://dspace.tdea.edu.co/handle/tdea/960
dc.descriptionsin ilustracionesspa
dc.description.abstractEl biocarbón es un material sólido procedente de la descomposición de biomasa de diferentes orígenes mediante procesos como la pirólisis, carbonización hidrotermal, gasificación y la microgasificación, entre otros. Las propiedades fisicoquímicas del biocarbón se pueden asociar a la composición inicial de la biomasa y al proceso de obtención de éste. Debido a su alta porosidad, a la gran variedad de tamaños en los poros y a la presencia de grupos funcionales, recientemente, el uso del biocarbón como alternativa para la eliminación de sustancias contaminantes presentes en las aguas ha despertado un gran interés dentro de la comunidad científica. Este trabajo provee información relacionada con las características del biocarbón asociadas al mecanismo de generación, así como con los parámetros o factores que intervienen en la remoción de contaminantes presentes en las aguas. De igual modo, se establecen los posibles usos del biocarbón después del tratamiento y las perspectivas futuras asociadas a la valorización de este residuo procedente de la generación de energía a partir de biomasa, contribuyendo a la anhelada economía circular.spa
dc.format.extent8 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherTecnológico de Antioquia, Institución Universitariaspa
dc.rightsTecnológico de Antioquia, Institución Universitaria, 2020spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.titleImplementación de biocarbón para el tratamiento de aguas residuales contaminadasspa
dc.typeTrabajo de grado - Pregradospa
dcterms.referencesAbdel-Fattah, T. M., Mahmoud, M. E., Ahmed, S. B., Huff, M. D., Lee, J. W., & Kumar, S. (2015). Biochar from woody biomass for removing metal contaminants and carbon sequestration. Journal of Industrial and Engineering Chemistry, 22, 103–109. https://doi.org/10.1016/j.jiec.2014.06.030spa
dcterms.referencesAhmad, M., Rajapaksha, A. U., Lim, J. E., Zhang, M., Bolan, N., Mohan, D., Vithanage. Lee., Ok, Y. S. (2014). Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere, 99, 19–33. https://doi.org/10.1016/j.chemosphere.2013.10.071spa
dcterms.referencesAnjaneyulu, Y., Sreedhara Chary, N., & Samuel Suman Raj, D. (2005). Decolourization of industrial effluents - Available methods and emerging technologies - A review. Reviews in Environmental Science and Biotechnology, 4(4), 245–273. https://doi.org/10.1007/s11157-005-1246-zspa
dcterms.referencesArroyave-Manco, J.C., Arboleda, J.C., Hoyos-Ayala, D.A. and Echavarría-Isaza, A.P., Zeolitas LTA y FAU obtenidas a partir de cenizas volantes y su aplicación en remoción de Cromo. DYNA, 85(204), 150-160, http://dx.doi.org/10.15446/dyna.v85n204.67096spa
dcterms.referencesBădescu, I. S., Bulgariu, D., Ahmad, I., & Bulgariu, L. (2018). Valorisation possibilities of exhausted biosorbents loaded with metal ions – A review. Journal of Environmental Management, 224(April), 288–297. https://doi.org/10.1016/j.jenvman.2018.07.066spa
dcterms.referencesBarrios-Ziolo, L. F., Gaviria-Restrepo, L. F., Agudelo, E. A., & Cardona-Gallo, S. A. (2015). Technologies for the removal of dyes and pigments present in wastewater. A review. DYNA (Colombia), 82(191), 118–126. https://doi.org/10.15446/dyna.v82n191.42924spa
dcterms.referencesCampos, P., Miller, A. Z., Knicker, H., Costa-Pereira, M. F., Merino, A., & De la Rosa, J. M. (2020). Chemical, physical and morphological properties of biochars produced from agricultural residues: Implications for their use as soil amendment. Waste Management, 105, 256–267. https://doi.org/10.1016/j.wasman.2020.02.013spa
dcterms.referencesCésar, V., & Vásquez, G. (2003). Ingenieria de los sistemas de tratamiento y disposicion de aguas residuales. Fundación Ica, 341. Libro en publicación electrónica. Recuperado de https://www.academia.edu/31205529/Ingenier%C3%ADa_de_los_sistemas_de_tratamiento_y_disposici%C3%B3n_de_aguas_residualesspa
dcterms.referencesChoudhary, M., Kumar, R., & Neogi, S. (2020). Activated biochar derived from Opuntia ficus-indica for the efficient adsorption of malachite green dye, Cu+2 and Ni+2 from water. Journal of Hazardous Materials, 392, 12244-12249. https://doi.org/10.1016/j.jhazmat.2020.122441spa
dcterms.referencesCortazar Martínez, A., González Ramírez, C. A., Coronel Olivares, C., Escalante Lozada, J. A., Castro Rosas, J., & VillagómezIbarra, J. R. (2012). Biotecnología aplicada a la degradación de colorantes de la industria textil. Biotechnology applied to the degradation of textile industry dyes. Universidad y Ciencia, 28(2), 187–199. Recuperado de http://www.scielo.org.mx/scielo.php?pid=S0186-29792012000200009&script=sci_arttext&tlng=pt%0Awww.universidadyciencia.ujat.mxspa
dcterms.referencesDa Silva Veiga, P. A., Schultz, J., Matos, T. T. da S., Fornari, M. R., Costa, T. G., Meurer, L., & Mangrich, A. S. (2020). Production of high-performance biochar using a simple and low-cost method: optimization of pyrolysis parameters and evaluation for water treatment. Journal of Analytical and Applied Pyrolysis, (April), 104823. https://doi.org/10.1016/j.jaap.2020.104823spa
dcterms.referencesDeng, Y., Huang, S., Dong, C., Meng, Z., & Wang, X. (2020). Competitive adsorption behaviour and mechanisms of cadmium, nickel and ammonium from aqueous solution by fresh and ageing rice straw biochars. Bioresource Technology, 303, 122853. https://doi.org/10.1016/j.biortech.2020.122853spa
dcterms.referencesEscalante, A., Pérez, G., Hidalgo, C., López, J., Campo, J., Valtierra, E., & Etchevers, J. (2016). Biocarbón (biochar) I: Naturaleza, historia, fabricación y uso en el suelo Biocarbon (biochar) I: Nature, history, manufacture and use in soil. Terra Latinoamericana, 34, 367–382. Recuperado de http://www.scielo.org.mx/pdf/tl/v34n3/2395-8030-tl-34-03-00367.pdfspa
dcterms.referencesFeng, Y., Liu, P., Wang, Y., Liu, W., Liu, Y. Y., & Finfrock, Y. Z. (2020). Mechanistic investigation of mercury removal by unmodified and Fe-modified biochars based on synchrotron-based methods. Science of the Total Environment, 719, 137435-137442. https://doi.org/10.1016/j.scitotenv.2020.137435spa
dcterms.referencesGil, M., María Soto, A., Iván Usma, J., & Darío Gutiérrez, O. (2012). Emerging contaminants in waters: effects and possible treatments Contaminantes emergentes em águas, efeitos e possíveis tratamentos. 7(2), 52–73. Recuperado de http://www.scielo.org.co/pdf/pml/v7n2/v7n2a05.pdfspa
dcterms.referencesGobierno de la Republica de Colombia. (2019). Estrategia nacional de economía circular. Cierre de ciclos de materiales, innovación tecnológica, colaboración y nuevos modelos de negocio. Bogotá D.C., Colombia. Presidencia de la República; Ministerio de Ambiente y Desarrollo Sostenible; Ministerio de Comercio, Industria y Turismo. Recuperado de http://www.andi.com.co/Uploads/Estrategia%20Nacional%20de%20EconA%CC%83%C2%B3mia%20Circular-2019%20Final.pdf_637176135049017259.pdfspa
dcterms.referencesGokulan, R., Avinash, A., Prabhu, G. G., & Jegan, J. (2019). Remediation of remazol dyes by biochar derived from Caulerpa scalpelliformis - An eco-friendly approach. Journal of Environmental Chemical Engineering, 7(5), 103297. https://doi.org/10.1016/j.jece.2019.103297spa
dcterms.referencesHan, Y., Cao, X., Ouyang, X., Sohi, S. P., & Chen, J. (2016). Adsorption kinetics of magnetic biochar derived from peanut hull on removal of Cr (VI) from aqueous solution: Effects of production conditions and particle size. Chemosphere, 145, 336–341. https://doi.org/10.1016/j.chemosphere.2015.11.050spa
dcterms.referencesHarikishore Kumar Reddy, D., Vijayaraghavan, K., Kim, J. A., & Yun, Y. S. (2017). Valorisation of post-sorption materials: Opportunities, strategies, and challenges. Advances in Colloid and Interface Science, 242, 35–58. https://doi.org/10.1016/j.cis.2016.12.002spa
dcterms.referencesHe, J., Strezov, V., Kan, T., Weldekidan, H., & Kumar, R. (2019). Slow pyrolysis of metal (loid) rich biomass from phytoextraction: Characterisation of biomass, biochar and bio-oil. Energy Procedia, 160(2018), 178–185. https://doi.org/10.1016/j.egypro.2019.02.134spa
dcterms.referencesIdrees, M., Batool, S., Kalsoom, T., Yasmeen, S., Kalsoom, A., Raina, S., Zhuang, Q., & Kong, J. (2018). Animal manure-derived biochars produced via fast pyrolysis for the removal of divalent copper from aqueous media. Journal of Environmental Management, 213, 109–118. https://doi.org/10.1016/j.jenvman.2018.02.003spa
dcterms.referencesInstituto Español de Esdudios Estratégicos. (2017). Cuadernos de Estrategia 186 El agua: ¿fuente de conflicto o cooperación? Recuperado de http://www.ieee.es/Galerias/fichero/cuadernos/CE-186_Agua.pdfspa
dcterms.referencesInyang, M., & Dickenson, E. (2015). The potential role of biochar in the removal of organic and microbial contaminants from potable and reuse water: A review. Chemosphere, 134, 232–240. https://doi.org/10.1016/j.chemosphere.2015.03.072spa
dcterms.referencesJavaid, R., & Qazi, U. Y. (2019). Catalytic oxidation process for the degradation of synthetic dyes: An overview. International Journal of Environmental Research and Public Health, 16(11), 1–27. https://doi.org/10.3390/ijerph16112066spa
dcterms.referencesJohannes L. (2007). Bio-Energy in the Black. Frontiers in Ecology and the Environment, 5(September), 381–387. Recuperado de https://esajournals.onlinelibrary.wiley.com/doi/10.1890/1540-9295%282007%295%5B381%3ABITB%5D2.0.CO%3B2spa
dcterms.referencesKhan, N., Chowdhary, P., Ahmad, A., Shekher Giri, B., & Chaturvedi, P. (2020). Hydrothermal liquefaction of rice husk and cow dung in Mixed-Bed-Rotating Pyrolyzer and application of biochar for dye removal. Bioresource Technology, 309(April), 123294. https://doi.org/10.1016/j.biortech.2020.123294spa
dcterms.referencesKim, W. K., Shim, T., Kim, Y. S., Hyun, S., Ryu, C., Park, Y. K., & Jung, J. (2013). Characterization of cadmium removal from aqueous solution by biochar produced from a giant Miscanthus at different pyrolytic temperatures. Bioresource Technology, 138, 266–270. https://doi.org/10.1016/j.biortech.2013.03.186spa
dcterms.referencesKlaunig, J. E., Kamendulis, L. M., & Hocevar, B. A. (2010). Oxidative stress and oxidative damage in carcinogenesis. Toxicologic Pathology, 38(1), 96–109. https://doi.org/10.1177/0192623309356453spa
dcterms.referencesLee, Y., Eum, P. R. B., Ryu, C., Park, Y. K., Jung, J. H., & Hyun, S. (2013). Characteristics of biochar produced from slow pyrolysis of Geodae-Uksae 1. Bioresource Technology, 130, 345–350. https://doi.org/10.1016/j.biortech.2012.12.012spa
dcterms.referencesLi, H., Dong, X., da Silva, E. B., de Oliveira, L. M., Chen, Y., & Ma, L. Q. (2017). Mechanisms of metal sorption by biochars: Biochar characteristics and modifications. Chemosphere, 178, 466–478. https://doi.org/10.1016/j.chemosphere.2017.03.072spa
dcterms.referencesLiu, J., Huang, Z., Chen, Z., Sun, J., Gao, Y., & Wu, E. (2020). Resource utilization of swine sludge to prepare modified biochar adsorbent for the efficient removal of Pb(II) from water. Journal of Cleaner Production, 257(Ii), 120322. https://doi.org/10.1016/j.jclepro.2020.120322spa
dcterms.referencesLonappan, L., Rouissi, T., Brar, S. K., Verma, M., & Surampalli, R. Y. (2018). Adsorption of diclofenac onto different biochar microparticles: Dataset – Characterization and dosage of biochar. Data in Brief, 16, 460–465. https://doi.org/10.1016/j.dib.2017.10.041spa
dcterms.referencesLu, L., Lin, Y., Chai, Q., He, S., & Yang, C. (2018). Removal of acenaphthene by biochar and raw biomass with coexisting heavy metal and phenanthrene. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 558, 103–109. https://doi.org/10.1016/j.colsurfa.2018.08.057spa
dcterms.referencesManyà, J. J., Azuara, M., & Manso, J. A. (2018). Biochar production through slow pyrolysis of different biomass materials: Seeking the best operating conditions. Biomass and Bioenergy, 117(August), 115–123. https://doi.org/10.1016/j.biombioe.2018.07.019spa
dcterms.referencesMašek, O., Budarin, V., Gronnow, M., Crombie, K., Brownsort, P., Fitzpatrick, E., & Hurst, P. (2013). Microwave and slow pyrolysis biochar - Comparison of physical and functional properties. Journal of Analytical and Applied Pyrolysis, 100, 41–48. https://doi.org/10.1016/j.jaap.2012.11.015spa
dcterms.referencesMinisterio de desarrollo económico (17 de noviembre de 2000) Resolución 1096. Por la cual se adopta el Reglamento Técnico para el sector de Agua Potable y Saneamiento Básico – RAS. Recuperado de http://www.minvivienda.gov.co/ResolucionesAgua/1096%20-%202000.pdfspa
dcterms.referencesMinisterio de medio ambiente (17 de marzo de 2015) Resolución 0631. Por la cual se establecen los parámetros y los valores límites máximos permisibles en los vertimientos puntuales a cuerpos de aguas superficiales y a los sistemas de alcantarillado público y se dictan otras disposiciones. Recuperado de https://www.minambiente.gov.co/images/normativa/app/resoluciones/d1-res_631_marz_2015.pdfspa
dcterms.referencesMinisterio de medio ambiente (18 de mayo de 2010) Resolución 0883. Por la cual se establecen los parámetros y los valores límites máximos permisibles en los vertimientos puntuales a cuerpos de aguas marinas, y se dictan otras disposiciones. Recuperado de http://www.minambiente.gov.co/images/normativa/app/resoluciones/18-res%20883%20de%202018.pdfspa
dcterms.referencesMorseletto, P. (2020). Targets for a circular economy. Resources, Conservation and Recycling, 153, 53-59, 104553. https://doi.org/10.1016/j.resconrec.2019.104553spa
dcterms.referencesNguyen, V. T., Nguyen, T. B., Chen, C. W., Hung, C. M., Chang, J. H., & Dong, C. D. (2019). Influence of pyrolysis temperature on polycyclic aromatic hydrocarbons production and tetracycline adsorption behavior of biochar derived from spent coffee ground. Bioresource Technology, 284, 197-203. https://doi.org/10.1016/j.biortech.2019.03.096spa
dcterms.referencesNi, B. J., Huang, Q. S., Wang, C., Ni, T. Y., Sun, J., & Wei, W. (2019). Competitive adsorption of heavy metals in aqueous solution onto biochar derived from anaerobically digested sludge. Chemosphere, 219, 351–357. https://doi.org/10.1016/j.chemosphere.2018.12.053spa
dcterms.referencesOginni, O., Yakaboylu, G. A., Singh, K., Sabolsky, E. M., Unal-Tosun, G., Jaisi, D., Khanal, S., & Shah, A. (2020). Phosphorus adsorption behaviors of MgO modified biochars derived from waste woody biomass resources. Journal of Environmental Chemical Engineering, 8(2), 103723. https://doi.org/10.1016/j.jece.2020.103723spa
dcterms.referencesPagalan, E., Sebron, M., Gomez, S., Salva, S. J., Ampusta, R., Macarayo, A. J., Joyno, C., Ido, A., & Arazo, R. (2020). Activated carbon from spent coffee grounds as an adsorbent for treatment of water contaminated by aniline yellow dye. Industrial Crops and Products, 145(June 2019), 111953. https://doi.org/10.1016/j.indcrop.2019.111953spa
dcterms.referencesPeña, M. E. D. La, Ducci, J., & Zamora, V. (2013). Tratamiento de aguas residuales en México. Nota Técnica #IDB-TN-521, 42. https://doi.org/IDB-TN-521spa
dcterms.referencesPreston, R. J., Skare, J. A., & Aardema, M. J. (2010). A review of biomonitoring studies measuring genotoxicity in humans exposed to hair dyes. Mutagenesis, 25(1), 17–23. https://doi.org/10.1093/mutage/gep044spa
dcterms.referencesQi, F., Yan, Y., Lamb, D., Naidu, R., Bolan, N. S., Liu, Y., Ok, Y., Donne, S., & Semple, K. T. (2017). Thermal stability of biochar and its effects on cadmium sorption capacity. Bioresource Technology, 246, 48–56. https://doi.org/10.1016/j.biortech.2017.07.033spa
dcterms.referencesReyes, Y.C., Vergara, I., Torres, O.E., Díaz-Lagos, M., & González, E.E. (2016). Contaminación por metales pesados: Implicaciones en salud, ambiente y seguridad alimentaria. Revista Ingeniería Investigación y Desarrollo, 16 (2), pp. 66-77. Recuperado de https://dialnet.unirioja.es/servlet/articulo?codigo=6096110spa
dcterms.referencesShan, R., Shi, Y., Gu, J., Bi, J., Yuan, H., Luo, B., & Chen, Y. (2020). Aqueous Cr(VI) removal by biochar derived from waste mangosteen shells: Role of pyrolysis and modification on its absorption process. Journal of Environmental Chemical Engineering, 8(4), 103885. https://doi.org/10.1016/j.jece.2020.103885spa
dcterms.referencesSizmur, T., Fresno, T., Akgül, G., Frost, H., & Moreno-Jiménez, E. (2017). Biochar modification to enhance sorption of inorganics from water. Bioresource Technology, 246, 34–47. https://doi.org/10.1016/j.biortech.2017.07.082spa
dcterms.referencesSun, L., Wan, S., & Luo, W. (2013). Biochars prepared from anaerobic digestion residue, palm bark, and eucalyptus for adsorption of cationic methylene blue dye: Characterization, equilibrium, and kinetic studies. Bioresource Technology, 140, 406–413. https://doi.org/10.1016/j.biortech.2013.04.116spa
dcterms.referencesTan, X., Liu, Y., Zeng, G., Wang, X., Hu, X., Gu, Y., & Yang, Z. (2015). Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere, 125, 70–85. https://doi.org/10.1016/j.chemosphere.2014.12.058spa
dcterms.referencesTran, H. N., Tomul, F., Thi Hoang Ha, N., Nguyen, D. T., Lima, E. C., Le, G. T., Chang, C., Masindi, V., & Woo, S. H. (2020). Innovative spherical biochar for pharmaceutical removal from water: Insight into adsorption mechanism. Journal of Hazardous Materials, 394, 122255. https://doi.org/10.1016/j.jhazmat.2020.122255spa
dcterms.referencesTruong, H. B., Ike, I. A., Ok, Y. S., & Hur, J. (2020). Polyethyleneimine modification of activated fly ash and biochar for enhanced removal of natural organic matter from water via adsorption. Chemosphere, 243, 125454. https://doi.org/10.1016/j.chemosphere.2019.125454spa
dcterms.referencesVyavahare, G. D., Gurav, R. G., Jadhav, P. P., Patil, R. R., Aware, C. B., & Jadhav, J. P. (2018). Response surface methodology optimization for sorption of malachite green dye on sugarcane bagasse biochar and evaluating the residual dye for phyto and cytogenotoxicity. Chemosphere, 194, 306–315. https://doi.org/10.1016/j.chemosphere.2017.11.180spa
dcterms.referencesWang, Q., Wang, B., Lee, X., Lehmann, J., & Gao, B. (2018). Sorption and desorption of Pb(II) to biochar as affected by oxidation and pH. Science of the Total Environment, 634, 188–194. https://doi.org/10.1016/j.scitotenv.2018.03.189spa
dcterms.referencesWWAP (Programa Mundial de Evaluación de los Recursos Hídricos de las Naciones Unidas). 2017. Informe Mundial de las Naciones Unidas sobre el Desarrollo de los Recursos Hídricos 2017. Aguas residuales: El recurso desaprovechado. París, UNESCO. Recuperado de http://cidta.usal.es/cursos/EDAR/modulos/Edar/unidades/LIBROS/logo/pdf/Aguas_Residuales_composicion.pdfspa
dcterms.referencesXu, X., Cao, X., & Zhao, L. (2013). Comparison of rice husk- and dairy manure-derived biochars for simultaneously removing heavy metals from aqueous solutions: Role of mineral components in biochars. Chemosphere, 92(8), 955–961. https://doi.org/10.1016/j.chemosphere.2013.03.009spa
dcterms.referencesZhang, Z. Bin, Cao, X. H., Liang, P., & Liu, Y. H. (2013). Adsorption of uranium from aqueous solution using biochar produced by hydrothermal carbonization. Journal of Radioanalytical and Nuclear Chemistry, 295(2), 1201–1208. https://doi.org/10.1007/s10967-012-2017-2spa
dcterms.referencesZhang, Y., Yue, X., Xu, W., Zhang, H., & Li, F. (2019). Amino modification of rice straw-derived biochar for enhancing its cadmium (II) ions adsorption from water. Journal of Hazardous Materials, 379(May), 120783. https://doi.org/10.1016/j.jhazmat.2019.120783spa
dcterms.referencesZubair, M., Manzar, M. S., Mu’azu, N. D., Anil, I., Blaisi, N. I., & Al-Harthi, M. A. (2020). Functionalized MgAl-layered hydroxide intercalated date-palm biochar for Enhanced Uptake of Cationic dye: Kinetics, isotherm and thermodynamic studies. Applied Clay Science, 190(December 2019), 105587. https://doi.org/10.1016/j.clay.2020.105587spa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.programIngenieria Ambientalspa
dc.description.degreelevelPregradospa
dc.description.degreenameIngeniero(a) Ambientalspa
dc.publisher.placeMedellínspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.subject.lemTratamiento terrestre de aguas residuales
dc.subject.lembCarbón
dc.subject.lembRecursos hídricos
dc.subject.lembContaminación
dc.subject.lembDesarrollo económico y social
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TPspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Tecnológico de Antioquia, Institución Universitaria, 2020
Excepto si se señala otra cosa, la licencia del ítem se describe como Tecnológico de Antioquia, Institución Universitaria, 2020