Mostrar el registro sencillo del ítem

dc.contributor.advisorValencia Hurtado, Sergio Humberto
dc.contributor.advisorRubio Clemente, Ainhoa
dc.contributor.authorPuerta Zapata, Heidy Alexandra
dc.date.accessioned2023-11-30T15:52:35Z
dc.date.available2023-11-30T15:52:35Z
dc.date.issued2023
dc.identifier.citationAPAspa
dc.identifier.urihttps://dspace.tdea.edu.co/handle/tdea/4672
dc.description.abstractActualmente, diferentes industrias aplican en sus procesos productivos compuestos químicos para mejorar la calidad de sus productos, como son las sustancias per y polifluoralquiladas (PFAS). Estos compuestos se caracterizan por ser térmica y químicamente muy estables, difíciles de degradar tanto en las fuentes hídricas como en cualquier otro medio en el que se encuentren, y altamente tóxicas para los seres vivos. En este sentido, dados sus efectos adversos y la baja eficiencia de las diferentes unidades de tratamiento de aguas presentes en una planta de tratamiento de aguas (PTARs), se hace necesario proponer e implementar procesos de oxidación avanzada (POAs) para tratar este tipo de contaminantes recalcitrantes que afectan la calidad del medio. Con la presente investigación se pretende evaluar la eficiencia de los sistemas de oxidación avanzada en los que se combina radiación ultravioleta (UV) con ácido peracético (PAA, por sus siglas en inglés) y peróxido de hidrógeno (H2O2) (UV/PAA y UV/H2O2, respectivamente) en el tratamiento de aguas contaminadas con compuestos perfluorados, particularmente el ácido perfluorooctanoico (PFOA, por sus siglas en inglés). Para ello, se propone analizar la influencia de los factores de operación en el rendimiento del POA seleccionado, para así determinar cuál de los dos procesos tiene mayor potencial de remoción del contaminante de interés. Se utilizaron dos reactores fotoquímicos que irradian radiación UV a 254 nm y para el análisis del PFOA se utilizó cromatografía líquida de ultra-alto rendimiento junto con triple cuadrupolo de masa espectrometría Acquity H-Class de Waters (Milford, Massachusetts, Estados Unidos). Atendiendo a los resultados obtenidos, los sistemas UV/PAA y UV/H2O2 para el tratamiento de aguas contaminadas con PFOA no cuentan con la capacidad de removerlo bajo las condiciones de operación analizadas (pH, concentración de PFOA y concentración de agentes oxidantes como el PAA y el H2O2). Este resultado puede atribuirse al poder recalcitrante asociado a las PFAS. Es por ello que se hace necesario continuar investigando y evaluar en qué condiciones se ve favorecida la remoción y alcanzar eficiencias que permitan garantizar un adecuado tratamiento para este contaminante, en caso de que sea posible obtener resultados más alentadores.
dc.description.sponsorshipMinCienciasspa
dc.format.extent11 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherTecnológico de Antioquia, Institución Universitariaspa
dc.rightsTecnológico de Antioquia Institución Universitaria, 2023
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.titleTítulo: EVALUACIÓN DE LA EFICIENCIA DE LOS SISTEMAS UV/PAA Y UV/H2O2 EN EL TRATAMIENTO DE AGUAS CONTAMINADAS CON COMPUESTOS PERFLUORADOS
dc.typeTrabajo de grado - Pregradospa
dc.rights.licenseAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.programIngenieria Ambientalspa
dc.description.degreelevelPregradospa
dc.description.degreenameIngeniero(a) Ambientalspa
dc.identifier.instnameTecnológico de Antioquia Institución Universitariaspa
dc.identifier.reponameRepositorio Digital TdeAspa
dc.identifier.repourlhttps://dspace.tdea.edu.co/spa
dc.publisher.placeMedellínspa
dc.relation.referencesAdu, O., Ma, X., & Sharma, V. K. (2023a). Bioavailability, phytotoxicity and plant uptake of per-and polyfluoroalkyl substances (PFAS): A review. In Journal of Hazardous Materials (Vol. 447). Elsevier B.V. https://doi.org/10.1016/j.jhazmat.2023.130805spa
dc.relation.referencesAdu, O., Ma, X., & Sharma, V. K. (2023b). Bioavailability, phytotoxicity and plant uptake of per-and polyfluoroalkyl substances (PFAS): A review. In Journal of Hazardous Materials (Vol. 447). Elsevier B.V. https://doi.org/10.1016/j.jhazmat.2023.130805spa
dc.relation.referencesAdu, O., Ma, X., & Sharma, V. K. (2023c). Bioavailability, phytotoxicity and plant uptake of per-and polyfluoroalkyl substances (PFAS): A review. In Journal of Hazardous Materials (Vol. 447). Elsevier B.V. https://doi.org/10.1016/j.jhazmat.2023.130805spa
dc.relation.referencesAkter, J., Lee, J. Y., Ha, H. J., Yi, I. G., Hong, D. H., Park, C. M., Lee, M. Y., & Kim, I. (2022a). Degradation of Organics and Change Concentration in Per-Fluorinated Compounds (PFCs) during Ozonation and UV/H2 O2 Advanced Treatment of Tertiary-Treated Sewage. Sustainability (Switzerland), 14(9). https://doi.org/10.3390/su14095597spa
dc.relation.referencesAkter, J., Lee, J. Y., Ha, H. J., Yi, I. G., Hong, D. H., Park, C. M., Lee, M. Y., & Kim, I. (2022b). Degradation of Organics and Change Concentration in Per-Fluorinated Compounds (PFCs) during Ozonation and UV/H2 O2 Advanced Treatment of Tertiary-Treated Sewage. Sustainability (Switzerland), 14(9). https://doi.org/10.3390/su14095597spa
dc.relation.referencesAmbaye, T. G., Vaccari, M., Prasad, S., & Rtimi, S. (2022). Recent progress and challenges on the removal of per- and poly-fluoroalkyl substances (PFAS) from contaminated soil and water. In Environmental Science and Pollution Research (Vol. 29, Issue 39, pp. 58405–58428). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/s11356-022-21513-2spa
dc.relation.referencesArias Espana, V. A., Mallavarapu, M., & Naidu, R. (2015a). Treatment technologies for aqueous perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA): A critical review with an emphasis on field testing. In Environmental Technology and Innovation (Vol. 4, pp. 168–181). Elsevier. https://doi.org/10.1016/j.eti.2015.06.001spa
dc.relation.referencesArias Espana, V. A., Mallavarapu, M., & Naidu, R. (2015b). Treatment technologies for aqueous perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA): A critical review with an emphasis on field testing. In Environmental Technology and Innovation (Vol. 4, pp. 168–181). Elsevier. https://doi.org/10.1016/j.eti.2015.06.001spa
dc.relation.referencesBaker, E. S., & Knappe, D. R. U. (2022). Per- and polyfluoroalkyl substances (PFAS)—contaminants of emerging concern. In Analytical and Bioanalytical Chemistry (Vol. 414, Issue 3, pp. 1187–1188). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/s00216-021-03811-9spa
dc.relation.referencesBansal, O. P., Kumar Bhardwaj, M., & Gupta, V. (2022). PER AND POLYFLUOROALKYL SUBSTANCES (PFAS) IN THE ENVIRONMENT: A REVIEW. Journal of Advanced Scientific Research, 13(7), 1–25. https://doi.org/10.55218/JASR.202213701spa
dc.relation.referencesBanyoi, S. M., Porseryd, T., Larsson, J., Grahn, M., & Dinnétz, P. (2022). The effects of exposure to environmentally relevant PFAS concentrations for aquatic organisms at different consumer trophic levels: Systematic review and meta-analyses. In Environmental Pollution (Vol. 315). Elsevier Ltd. https://doi.org/10.1016/j.envpol.2022.120422spa
dc.relation.referencesBerhanu, A., Mutanda, I., Taolin, J., Qaria, M. A., Yang, B., & Zhu, D. (2023a). A review of microbial degradation of per- and polyfluoroalkyl substances (PFAS): Biotransformation routes and enzymes. In Science of the Total Environment (Vol. 859). Elsevier B.V. https://doi.org/10.1016/j.scitotenv.2022.160010spa
dc.relation.referencesBerhanu, A., Mutanda, I., Taolin, J., Qaria, M. A., Yang, B., & Zhu, D. (2023b). A review of microbial degradation of per- and polyfluoroalkyl substances (PFAS): Biotransformation routes and enzymes. In Science of the Total Environment (Vol. 859). Elsevier B.V. https://doi.org/10.1016/j.scitotenv.2022.160010spa
dc.relation.referencesBrake, H. D., Langfeldt, A., Kaneene, J. B., & Wilkins, M. J. (2023). Current per- and polyfluoroalkyl substance (PFAS) research points to a growing threat in animals. Journal of the American Veterinary Medical Association, 1–7. https://doi.org/10.2460/javma.22.12.0582spa
dc.relation.referencesCastañeda Jiménez, A. C. (2014a). Procesos de Oxidación Avanzada Aplicados en el Tratamiento de Aguas de la Industria del Petróleo [Escuela Colombiana de Ingeniería Julio Garavito]. https://repositorio.escuelaing.edu.co/bitstream/handle/001/84/Casta%C3%B1eda%20Jimenez%2C%20Amparo%20Carolina%20-%202014.pdf?sequence=1&isAllowed=y#:~:text=El%20proceso%20consiste%20en%20una,tiempos%20de%20reacci%C3%B3n%20muy%20cortos.spa
dc.relation.referencesCastañeda Jiménez, A. C. (2014b). Procesos de Oxidación Avanzada Aplicados en el Tratamiento de Aguas de la Industria del Petróleo [Escuela Colombiana de Ingeniería Julio Garavito]. https://repositorio.escuelaing.edu.co/bitstream/handle/001/84/Casta%C3%B1eda%20Jimenez%2C%20Amparo%20Carolina%20-%202014.pdf?sequence=1&isAllowed=y#:~:text=El%20proceso%20consiste%20en%20una,tiempos%20de%20reacci%C3%B3n%20muy%20cortos.spa
dc.relation.referencesChen, S., Cai, M., Liu, Y., Zhang, L., & Feng, L. (2019). Effects of water matrices on the degradation of naproxen by reactive radicals in the UV/peracetic acid process. Water Research, 150, 153–161. https://doi.org/10.1016/j.watres.2018.11.044spa
dc.relation.referencesCorrea-Sanchez, S., & Peñuela, G. A. (2022). Peracetic acid-based advanced oxidation processes for the degradation of emerging pollutants: A critical review. Journal of Water Process Engineering, 49. https://doi.org/10.1016/j.jwpe.2022.102986spa
dc.relation.referencesCrittenden, J. C., Hu, S., Hand, D. W., & Green, S. A. (1999). A KINETIC MODEL FOR H 2 O 2 /UV PROCESS IN A COMPLETELY MIXED BATCH REACTOR. https://doi.org/https://doi.org/10.1016/S0043-1354(98)00448-5spa
dc.relation.referencesCui, D., Li, X., & Quinete, N. (2020). Occurrence, fate, sources and toxicity of PFAS: What we know so far in Florida and major gaps. In TrAC - Trends in Analytical Chemistry (Vol. 130). Elsevier B.V. https://doi.org/10.1016/j.trac.2020.115976spa
dc.relation.referencesDadashi Firouzjaei, M., Zolghadr, E., Ahmadalipour, S., Taghvaei, N., Akbari Afkhami, F., Nejati, S., & Elliott, M. A. (2022). Chemistry, abundance, detection and treatment of per- and polyfluoroalkyl substances in water: a review. In Environmental Chemistry Letters (Vol. 20, Issue 1, pp. 661–679). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/s10311-021-01340-6spa
dc.relation.referencesde Rezende, H. C., de Lima, M., & Santos, L. D. (2023). PERACETIC ACID APPLICATION AS AN ANTIMICROBIAL AND ITS RESIDUAL (HEDP): A HOLISTIC APPROACH ON THE TECHNOLOGICAL CHARACTERISTICS OF CHICKEN MEAT. Poultry Science, 103003. https://doi.org/10.1016/j.psj.2023.103003spa
dc.relation.referencesDeLuca, N. M., Minucci, J. M., Mullikin, A., Slover, R., & Cohen Hubal, E. A. (2022). Human exposure pathways to poly- and perfluoroalkyl substances (PFAS) from indoor media: A systematic review. Environment International, 162. https://doi.org/10.1016/j.envint.2022.107149spa
dc.relation.referencesEnders, J. R., O’neill, G. M., Whitten, J. L., & Muddiman, D. C. (2021). Understanding the electrospray ionization response factors of per- and poly-fluoroalkyl substances (PFAS). https://doi.org/10.1007/s00216-021-03545-8/Publishedspa
dc.relation.referencesEPA. (2023a). Emisiones de gases fluorados. Agencia de Protección Ambiental de Estados Unidos. https://espanol.epa.gov/la-energia-y-el-medioambiente/emisiones-de-gases-fluoradosspa
dc.relation.referencesEPA. (2023b, March 14). Avisos de salud sobre las PFAS para el PFOA, el PFOS, las sustancias químicas GenX, el PFBS. Agencia de Protección Ambiental de Estados Unidos. https://espanol.epa.gov/espanol/avisos-de-salud-sobre-las-pfas-para-el-pfoa-el-pfos-las-sustancias-quimicas-genx-el-pfbsspa
dc.relation.referencesGoss, K. U. (2008). The pKa values of PFOA and other highly fluorinated carboxylic acids. Environmental Science and Technology, 42(2), 456–458. https://doi.org/10.1021/es702192cspa
dc.relation.referencesHollman, J., Dominic, J. A., & Achari, G. (2020a). Degradation of pharmaceutical mixtures in aqueous solutions using UV/peracetic acid process: Kinetics, degradation pathways and comparison with UV/H2O2. Chemosphere, 248. https://doi.org/10.1016/j.chemosphere.2020.125911spa
dc.relation.referencesHollman, J., Dominic, J. A., & Achari, G. (2020b). Degradation of pharmaceutical mixtures in aqueous solutions using UV/peracetic acid process: Kinetics, degradation pathways and comparison with UV/H2O2. Chemosphere, 248. https://doi.org/10.1016/j.chemosphere.2020.125911spa
dc.relation.referencesHu, J., Li, T., Zhang, X., Ren, H., & Huang, H. (2022). Degradation of steroid estrogens by UV/peracetic acid: Influencing factors, free radical contribution and toxicity analysis. Chemosphere, 287. https://doi.org/10.1016/j.chemosphere.2021.132261spa
dc.relation.referencesJiménez Martín, A. (2018). Microcontaminantes emergentes: PFOS y PFOA. https://dialnet.unirioja.es/descarga/articulo/6573034.pdfspa
dc.relation.referencesKiejza, D., Kotowska, U., Polińska, W., & Karpińska, J. (2021). Peracids - New oxidants in advanced oxidation processes: The use of peracetic acid, peroxymonosulfate, and persulfate salts in the removal of organic micropollutants of emerging concern − A review. In Science of the Total Environment (Vol. 790). Elsevier B.V. https://doi.org/10.1016/j.scitotenv.2021.148195spa
dc.relation.referencesLei, X., Lian, Q., Zhang, X., Karsili, T. K., Holmes, W., Chen, Y., Zappi, M. E., & Gang, D. D. (2023). A review of PFAS adsorption from aqueous solutions: Current approaches, engineering applications, challenges, and opportunities. In Environmental Pollution (Vol. 321). Elsevier Ltd. https://doi.org/10.1016/j.envpol.2023.121138spa
dc.relation.referencesMarín-Marín, M. L., Rubio-Clemente, A., & Peñuela, G. (2023). Advanced Oxidation Processes Used in The Treatment of Perfluoroalkylated Substances in Water. Revista UIS Ingenierías, 22(3). https://doi.org/10.18273/revuin.v22n3-2023010spa
dc.relation.referencesNxumalo, T., Akhdhar, A., Mueller, V., Simon, F., von der Au, M., Cossmer, A., Pfeifer, J., Krupp, E. M., Meermann, B., Kindness, A., & Feldmann, J. (2023). EOF and target PFAS analysis in surface waters affected by sewage treatment effluents in Berlin, Germany. Analytical and Bioanalytical Chemistry, 415(6), 1195–1204. https://doi.org/10.1007/s00216-022-04500-xspa
dc.relation.referencesOcampo, D. B., Vázquez, G. A., Martínez, S., Iturbe, U., & Coronel, C. (2022). Desinfección del agua: una revisión a los tratamientos convencionales y avanzados con cloro y ácido peracético. Ingeniería Del Agua, 26(3), 185–204. https://doi.org/10.4995/ia.2022.17651spa
dc.relation.referencesOjeda, C. P. (2009). Aplicación de ácidos orgánicos en la reducción de microorganismos Aerobios mesófilos y, Coliformes Totales y Fecales en canales de bovinos.spa
dc.relation.referencesPhan Thi, L. A., Do, H. T., Lee, Y. C., & Lo, S. L. (2013). Photochemical decomposition of perfluorooctanoic acids in aqueous carbonate solution with UV irradiation. Chemical Engineering Journal, 221, 258–263. https://doi.org/10.1016/j.cej.2013.01.084spa
dc.relation.referencesPing, Q., Yan, T., Wang, L., Li, Y., & Lin, Y. (2022). Insight into using a novel ultraviolet/peracetic acid combination disinfection process to simultaneously remove antibiotics and antibiotic resistance genes in wastewater: Mechanism and comparison with conventional processes. Water Research, 210. https://doi.org/10.1016/j.watres.2021.118019spa
dc.relation.referencesRamírez-Canon, A., Paola Becerra-Quiroz, A., & Herrera-Jacquelin, F. (2022a). Perfluoroalkyl and polyfluoroalkyl substances (PFAS): First survey in water samples from the Bogotá River, Colombia. Environmental Advances, 8. https://doi.org/10.1016/j.envadv.2022.100223spa
dc.relation.referencesRamírez-Canon, A., Paola Becerra-Quiroz, A., & Herrera-Jacquelin, F. (2022b). Perfluoroalkyl and polyfluoroalkyl substances (PFAS): First survey in water samples from the Bogotá River, Colombia. Environmental Advances, 8. https://doi.org/10.1016/j.envadv.2022.100223spa
dc.relation.referencesRickard, B. P., Rizvi, I., & Fenton, S. E. (2022). Per- and poly-fluoroalkyl substances (PFAS) and female reproductive outcomes: PFAS elimination, endocrine-mediated effects, and disease. Toxicology, 465. https://doi.org/10.1016/j.tox.2021.153031spa
dc.relation.referencesRiera, M., Rojas, M., & Zapata, P. (2010). Protocolo de extracción de DNA por salting-out para pequeños volúmenes de sangre. In Rev. Cienc. Tecnol. Año (Vol. 12).spa
dc.relation.referencesRizzo, L., Agovino, T., Nahim-Granados, S., Castro-Alférez, M., Fernández-Ibáñez, P., & Polo-López, M. I. (2019). Tertiary treatment of urban wastewater by solar and UV-C driven advanced oxidation with peracetic acid: Effect on contaminants of emerging concern and antibiotic resistance. Water Research, 149, 272–281. https://doi.org/10.1016/j.watres.2018.11.031spa
dc.relation.referencesRojas, C., Rocio, J., Villaverde, V., & Karina, L. (2021). EFECTO DE LA CONCENTRACIÓN DEL TiO 2 Y pH EN LA MINERALIZACIÓN DEL CARBOFURÁN PRESENTE EN AGUAS RESIDUALES POR FOTOCATÁLISIS HETEROGÉNEA.spa
dc.relation.referencesSoria, O., Pérez, J., Palacios, J., & Cortés, J. (2020). Bases de la química heterocíclica aplicada a la obtención de compuestos orgánicos de interés farmacéutico (1.a ed.). Universidad Autónoma Metropolitana.spa
dc.relation.referencesTeymourian, T., Teymoorian, T., Kowsari, E., & Ramakrishna, S. (2021a). A review of emerging PFAS contaminants: sources, fate, health risks, and a comprehensive assortment of recent sorbents for PFAS treatment by evaluating their mechanism. In Research on Chemical Intermediates (Vol. 47, Issue 12, pp. 4879–4914). Springer Science and Business Media B.V. https://doi.org/10.1007/s11164-021-04603-7spa
dc.relation.referencesTeymourian, T., Teymoorian, T., Kowsari, E., & Ramakrishna, S. (2021b). A review of emerging PFAS contaminants: sources, fate, health risks, and a comprehensive assortment of recent sorbents for PFAS treatment by evaluating their mechanism. In Research on Chemical Intermediates (Vol. 47, Issue 12, pp. 4879–4914). Springer Science and Business Media B.V. https://doi.org/10.1007/s11164-021-04603-7spa
dc.relation.referencesTeymourian, T., Teymoorian, T., Kowsari, E., & Ramakrishna, S. (2021c). A review of emerging PFAS contaminants: sources, fate, health risks, and a comprehensive assortment of recent sorbents for PFAS treatment by evaluating their mechanism. In Research on Chemical Intermediates (Vol. 47, Issue 12, pp. 4879–4914). Springer Science and Business Media B.V. https://doi.org/10.1007/s11164-021-04603-7spa
dc.relation.referencesTrojanowicz, M., Bojanowska-Czajka, A., Bartosiewicz, I., & Kulisa, K. (2018). Advanced Oxidation/Reduction Processes treatment for aqueous perfluorooctanoate (PFOA) and perfluorooctanesulfonate (PFOS) – A review of recent advances. In Chemical Engineering Journal (Vol. 336, pp. 170–199). Elsevier B.V. https://doi.org/10.1016/j.cej.2017.10.153spa
dc.relation.referencesUmar, M. (2021). Reductive and oxidative UV degradation of PFAS—status, needs and future perspectives. In Water (Switzerland) (Vol. 13, Issue 22). MDPI. https://doi.org/10.3390/w13223185spa
dc.relation.referencesVendl, C., Taylor, M. D., Bräunig, J., Gibson, M. J., Hesselson, D., Gregory Neely, G., Lagisz, M., & Nakagawa, S. (2022). PFAS exposure of humans, animals and the environment: Protocol of an evidence review map and bibliometric analysis. In Environment International (Vol. 158). Elsevier Ltd. https://doi.org/10.1016/j.envint.2021.106973spa
dc.relation.referencesWang, R., Zhang, J., Yang, Y., Chen, C. E., Zhang, D., & Tang, J. (2022). Emerging and legacy per-and polyfluoroalkyl substances in the rivers of a typical industrialized province of China: Spatiotemporal variations, mass discharges and ecological risks. Frontiers in Environmental Science, 10. https://doi.org/10.3389/fenvs.2022.986719spa
dc.relation.referencesWang, X., Chen, Z., Wang, Y., & Sun, W. (2021a). A review on degradation of perfluorinated compounds based on ultraviolet advanced oxidation. In Environmental Pollution (Vol. 291). Elsevier Ltd. https://doi.org/10.1016/j.envpol.2021.118014spa
dc.relation.referencesWang, X., Chen, Z., Wang, Y., & Sun, W. (2021b). A review on degradation of perfluorinated compounds based on ultraviolet advanced oxidation. In Environmental Pollution (Vol. 291). Elsevier Ltd. https://doi.org/10.1016/j.envpol.2021.118014spa
dc.relation.referencesWright, J. M., Lee, A. L., Rappazzo, K. M., Ru, H., Radke, E. G., & Bateson, T. F. (2023). Systematic review and meta-analysis of birth weight and PFNA exposures. In Environmental Research (Vol. 222). Academic Press Inc. https://doi.org/10.1016/j.envres.2023.115357spa
dc.relation.referencesZhang, L., Liu, Y., & Fu, Y. (2020). Degradation kinetics and mechanism of diclofenac by UV/peracetic acid. RSC Advances, 10(17), 9907–9916. https://doi.org/10.1039/d0ra00363hspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.subject.proposalAguas residuales
dc.subject.proposalCompuestos perfluorados
dc.subject.proposalTratamiento del agua
dc.subject.proposalContaminantes emergentes
dc.subject.proposalEficiencia
dc.subject.proposalUV/PAA
dc.subject.proposalUV/H2O2
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TPspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.awardtitleEVALUACIÓN DE LA EFICIENCIA DE LOS SISTEMAS UV/PAA Y UV/H2O2 EN EL TRATAMIENTO DE AGUAS CONTAMINADAS CON COMPUESTOS PERFLUORADOSspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.contributor.jurySalcedo Hurtado, Kellys Nallith
dc.contributor.juryAlvarez Arboleda, Carlos Augusto


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Tecnológico de Antioquia Institución Universitaria, 2023
Excepto si se señala otra cosa, la licencia del ítem se describe como Tecnológico de Antioquia Institución Universitaria, 2023