Mostrar el registro sencillo del ítem

dc.contributor.authorGómez Piñerez, Luz Miryam
dc.contributor.authorUribe Soto, Sandra Inés
dc.contributor.authorGiraldo, Carlos Eduardo
dc.contributor.authorLucci Freitas, André Victor
dc.coverage.spatialNorte Andino
dc.date.accessioned2021-04-28T19:19:11Z
dc.date.available2021-04-28T19:19:11Z
dc.date.issued2017
dc.identifier.issn2045-2322
dc.identifier.urihttps://dspace.tdea.edu.co/handle/tdea/1186
dc.description.abstractThe Neotropics harbour the most diverse flora and fauna on Earth. The Andes are a major centre of diversification and source of diversity for adjacent areas in plants and vertebrates, but studies on insects remain scarce, even though they constitute the largest fraction of terrestrial biodiversity. Here, we combine molecular and morphological characters to generate a dated phylogeny of the butterfly genus Pteronymia (Nymphalidae: Danainae), which we use to infer spatial, elevational and temporal diversification patterns. We first propose six taxonomic changes that raise the generic species total to 53, making Pteronymia the most diverse genus of the tribe Ithomiini. Our biogeographic reconstruction shows that Pteronymia originated in the Northern Andes, where it diversified extensively. Some lineages colonized lowlands and adjacent montane areas, but diversification in those areas remained scarce. The recent colonization of lowland areas was reflected by an increase in the rate of evolution of species’ elevational ranges towards present. By contrast, speciation rate decelerated with time, with no extinction. The geological history of the Andes and adjacent regions have likely contributed to Pteronymia diversification by providing compartmentalized habitats and an array of biotic and abiotic conditions, and by limiting dispersal between some areas while promoting interchange across others.spa
dc.format.extent17 p.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherNature Publishing Groupspa
dc.rights2008- 2021 ResearchGate GmbH. Reservados todos los derechos.spa
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/spa
dc.source10.1038 / srep45966spa
dc.titleNorth Andean origin and diversification of the largest ithomiine butterfly genusspa
dc.typeArtículo de revistaspa
dcterms.referencesMyers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature. 403, 853–858 (2000).spa
dcterms.referencesBeckman, E. J. & Witt, C. C. Phylogeny and biogeography of the New World siskins and goldfinches: Rapid, recent diversification in the Central Andes. Mol. Phylogenet. Evol. 87, 28–45 (2015).spa
dcterms.referencesCastroviejo-Fisher, S., Guayasamin, J. M., Gonzalez-Voyer, A. & Vila, C. Neotropical diversification seen through glassfrogs. J. Biogeogr. 41, 66–80 (2014).spa
dcterms.referencesDe-Silva, D. L., Elias, M., Willmott, K., Mallet, J. & Day, J. J. Diversification of clearwing butterflies with the rise of the Andes. J. Biogeogr. 43, 44–58 (2016).spa
dcterms.referencesEbel, E. R. et al. Rapid diversification associated with ecological specialization in Neotropical Adelpha butterflies. Mol. Ecol. 24, 2392–2405 (2015).spa
dcterms.referencesElias, M. et al. Out of the Andes: patterns of diversification in clearwing butterflies. Mol. Ecol. 18, 1716–1729 (2009).spa
dcterms.referencesHughes, C. & Eastwood, R. Island radiation on a continental scale: Exceptional rates of plant diversification after uplift of the Andes. Proc. Natl. Acad. Sci. USA 103, 10334–10339 (2006).spa
dcterms.referencesLagomarsino, L. P., Condamine, F. L., Antonelli, A., Mulch, A. & Davis, C. C. The abiotic and biotic drivers of rapid diversification in Andean bellflowers (Campanulaceae). New Phytologist. 210, 1430–1442 (2016).spa
dcterms.referencesHoorn, C. et al. Amazonia Through Time: Andean Uplift, Climate Change, Landscape Evolution, and Biodiversity. Science. 330, 927–931 (2010).spa
dcterms.referencesGregory-Wodzicki, K. M. Uplift history of the Central and Northern Andes: A review. Geol. Soc. Am. Bull. 112, 1091–1105 (2000).spa
dcterms.referencesLeier, A., McQuarrie, N., Garzione, C. & Eiler, J. Stable isotope evidence for multiple pulses of rapid surface uplift in the Central Andes, Bolivia. Earth and Planetary Science Letters. 371, 49–58 (2013).spa
dcterms.referencesBacon, C. D. et al. Biological evidence supports an early and complex emergence of the Isthmus of Panama. Proc. Natl. Acad. Sci. USA 112, 6110–6115 (2015).spa
dcterms.referencesWesselingh, F. P. et al. Lake Pebas: a palaeoecological reconstruction of a Miocene, long-lived lake complex in western Amazonia. Cainozoic Res. 1, 35–81 (2002).spa
dcterms.referencesWesselingh, F. P. & Salo, J. A. Miocene perspective on the evolution of the Amazonian biota. Scripta Geol., 133 (2006). Scripta Geologica. 133, 439–458 (2006).spa
dcterms.referencesGarzón-Orduña, I. J., Benetti-Longhini, J. E. & Brower, A. V. Z. Timing the diversification of the Amazonian biota: butterfly divergences are consistent with Pleistocene refugia. J. Biogeogr. 41, 1631–1638 (2014).spa
dcterms.referencesMatos-Maraví, P. Investigating the timing of origin and evolutionary processes shaping regional species diversity: Insights from simulated data and neotropical butterfly diversification rates. Evolution. 70, 1638–1650 (2016).spa
dcterms.referencesRull, V. Origins of Biodiversity. Science. 331, 398–399 (2011).spa
dcterms.referencesRull, V. Pleistocene speciation is not refuge speciation. J. Biogeogr. 42, 602–604 (2015).spa
dcterms.referencesSmith, B. T. et al. The drivers of tropical speciation. Nature. 515, 406-+ (2014).spa
dcterms.referencesGentry, A. H. Neotropical floristic diversity: Phytogeographical connections between Central and South America, Pleistocene climatic fluctuations or an accident of Andean orogeny?. Annals of the Missouri Botanical Garden. 69, 557–593 (1982).spa
dcterms.referencesLamas, G. Ithomiinae in J. B. Heppner, ed. Atlas of Neotropical Lepidoptera. Checklist: Part 4A. Hesperioidea - Papilionoidea. (Association for Tropical Lepidoptera/Scientific Publishers, Gainsville, 2004).spa
dcterms.referencesAntonelli, A. & Sanmartin, I. Why are there so many plant species in the Neotropics? Taxon. 60, 403–414 (2011).spa
dcterms.referencesHughes, C. E., Pennington, R. T. & Antonelli, A. Neotropical Plant Evolution: Assembling the Big Picture. Botanical Journal of the Linnean Society. 171, 1–18 (2013).spa
dcterms.referencesLuebert, F. & Weigend, M. Phylogenetic insights into Andean plant diversification. Frontiers in Ecology and Evolution. 2 (2014).spa
dcterms.referencesMcGuire, J. A. et al. Molecular Phylogenetics and the Diversification of Hummingbirds. Curr. Biol. 24, 910–916 (2014).spa
dcterms.referencesWillmott, K. R., Hall, J. P. W. & Lamas, G. Systematics of Hypanartia (Lepidoptera: Nymphalidae: Nymphalinae), with a test for geographical speciation mechanisms in the Andes. Systematic Entomology. 26, 369–399 (2001).spa
dcterms.referencesCasner, K. L. & Pyrcz, T. W. Patterns and timing of diversification in a tropical montane butterfly genus, Lymanopoda (Nymphalidae, Satyrinae). Ecography. 33, 251–259 (2010).spa
dcterms.referencesChazot, N. et al. Mutualistic mimicry and filtering by altitude shape the structure of Andean butterfly communities. Am. Nat. 183, 26–39 (2014).spa
dcterms.referencesHall, J. P. W. Montane speciation patterns in Ithomiola butterflies (Lepidoptera: Riodinidae): are they consistently moving up in the world? Proc. R. Soc. B. 272, 2457–2466 (2005).spa
dcterms.referencesMatos-Maravi, P. F., Pena, C., Willmott, K. R., Freitas, A. V. L. & Wahlberg, N. Systematics and evolutionary history of butterflies in the “Taygetis clade” (Nymphalidae: Satyrinae: Euptychiina): Towards a better understanding of Neotropical biogeography. Mol. Phylogenet. Evol. 66, 54–68 (2013).spa
dcterms.referencesMassardo, D., Fornel, R., Kronforst, M., Goncalves, G. L. & Moreira, G. R. P. Diversification of the silverspot butterflies (Nymphalidae) in the Neotropics inferred from multi-locus DNA sequences. Mol. Phylogenet. Evol. 82, 156–165 (2015).spa
dcterms.referencesRosser, N., Phillimore, A. B., Huertas, B., Willmott, K. R. & Mallet, J. Testing historical explanations for gradients in species richness in heliconiine butterflies of tropical America. Biol. J. Linnean Soc. 105, 479–497 (2012).spa
dcterms.referencesCondamine, F. L., Silva-Brandão, K. L., Kergoat, G. J. & Sperling, F. A. H. Biogeographic and diversification patterns of Neotropical Troidini butterflies (Papilionidae) support a museum model of diversity dynamics for Amazonia. BMC Evol. Biol. 12 (2012).spa
dcterms.referencesBeccaloni, G. W. Ecology, behaviour and natural history of ithomiine butterflies (Lepidoptera: Nymphalidae) and their mimics in Ecuador. Trop. Lep. 8, 103–124 (1997).spa
dcterms.referencesChazot, N. et al. Into the Andes: multiple independent colonizations drive montane diversity in the Neotropical clearwing butterflies Godyridina. Mol. Ecol. 25, 5765–5784 (2016).spa
dcterms.referencesJiggins, C. D., Mallarino, R., Willmott, K. R. & Bermingham, E. The phylogenetic pattern of speciation and wing pattern change in neotropical Ithomia butterflies (Lepidoptera: Nymphalidae). Evolution. 60, 1454–1466 (2006).spa
dcterms.referencesChazot, N. et al. Patterns of species, phylogenetic and mimicry diversity of clearwing butterflies in the Neotropics. In Biodiversity Conservation and Phylogenetic Systematics (eds Pellens, R. & Grandcolas, P.) 333–354 (Springer, 2016).spa
dcterms.referencesGarzón-Orduña, I. J., Silva-Brandão, K. L., Willmott, K. R., Freitas, A. V. L. & Brower, A. V. Z. Incompatible ages for clearwing butterflies based on alternative secondary calibrations. Syst. Biol. 64, 752–67 (2015).spa
dcterms.referencesWahlberg, N. et al. Nymphalid butterflies diversify following near demise at the Cretaceous/Tertiary boundary. Proc. R. Soc. B. 276, 4295–4302 (2009).spa
dcterms.referencesNeild, A. The Butterflies of Venezuela. Part 2: Nymphalidae II (Acraeinae, Libytheinae, Nymphalinae, Ithomiinae, Morphinae). A comprehensive guide to the identification of adult Nymphalidae, Papilionidae, and Pieridae. 276 pp. (Meridian Publications, London, 2008).spa
dcterms.referencesBolaños M. I. A., Zambrano G. G. & Willmott, K. R. Descripción de los estados inmaduros de Pteronymia zerlina zerlina, P. zerlina machay, P. veia florea y P. medellina de Colombia y del Ecuador (Lepidoptera: Nymphalidae: Ithomiini). Tropical Lepidoptera Research. 21, 27–33 (2011).spa
dcterms.referencesBrown, K. S. & Freitas, A. V. L. Juvenile stages of Ithomiinae: overview and systematics (Lepidoptera: Nymphalidae). Trop. Lep. 5, 9–20 (1994).spa
dcterms.referencesSärkinen, T., Bohs, L., Olmstead, R. G. & Knapp, S. A phylogenetic framework for evolutionary study of the nightshades (Solanaceae): a dated 1000-tip tree. BMC Evol. Biol. 13 (2013).spa
dcterms.referencesMagallón, S., Gomez-Acevedo, S., Sanchez-Reyes, L. L. & Hernandez-Hernandez, T. A metacalibrated time-tree documents the early rise of flowering plant phylogenetic diversity. New Phytologist. 207, 437–453 (2015).spa
dcterms.referencesDrummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian Phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution. 29, 1969–1973 (2012).spa
dcterms.referencesYu, Y., Harris, A. J. & He, X.-J. RASP (Reconstruct Ancestral State in Phylogenies), version 2.0. Available: http://mnh.scu.edu.cn/soft/ blog/RASP (2013).spa
dcterms.referencesPagel, M. Inferring the historical patterns of biological evolution. Nature. 401, 877–884 (1999).spa
dcterms.referencesAlfaro, M. E. et al. Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates. Proc. Natl. Acad. Sci. USA 106, 13410–13414 (2009).spa
dcterms.referencesMorlon, H., Parsons, T. L. & Plotkin, J. B. Reconciling molecular phylogenies with the fossil record. Proc. Natl. Acad. Sci. USA 108, 16327–16332 (2011).spa
dcterms.referencesDe-Silva, D. L. et al. Molecular phylogenetics of the neotropical butterfly subtribe Oleriina (Nymphalidae: Danainae: Ithomiini). Mol. Phylogenet. Evol. 55, 1032–1041 (2010).spa
dcterms.referencesMallarino, R., Bermingham, E., Willmott, K. R., Whinnett, A. & Jiggins, C. D. Molecular systematics of the butterfly genus Ithomia (Lepidoptera: Ithomiinae): a composite phylogenetic hypothesis based on seven genes. Mol. Phylogenet. Evol. 34, 625–644 (2005).spa
dcterms.referencesHeliconius_Genome_Consortium. Butterfly genome reveals promiscuous exchange of mimicry adaptations among species. Nature. 487, 94–98 (2012).spa
dcterms.referencesMartin, S. H. et al. Genome-wide evidence for speciation with gene flow in Heliconius butterflies. Genome Research. 23, 1817–1828 (2013).spa
dcterms.referencesMavarez, J. et al. Speciation by hybridization in Heliconius butterflies. Nature. 441, 868–871 (2006).spa
dcterms.referencesFoster, C. S. P. et al. Evaluating the impact of genomic data and priors on Bayesian estimates of the Angiosperm evolutionary timescale. Syst. Biol. syw086 (2016).spa
dcterms.referencesWilf, P., Carvalho, M. R., Gandolfo, M. A. & Cúneo, N. R. Eocene lantern fruits from Gondwanan Patagonia and the early origins of Solanaceae. Science. 355, 71–75 (2017).spa
dcterms.referencesKnapp, S. Tobacco to tomatoes: a phylogenetic perspective on fruit diversity in the Solanaceae. Journal of Experimental Botany. 53, 2001–2022 (2002).spa
dcterms.referencesHe, C. Y. & Saedler, H. Heterotopic expression of MPF2 is the key to the evolution of the Chinese lantern of Physalis, a morphological novelty in Solanaceae. Proc. Natl. Acad. Sci. USA 102, 5779–5784 (2005).spa
dcterms.referencesHu, J. Y. & Saedler, H. Evolution of the inflated calyx syndrome in solanaceae. Molecular Biology and Evolution. 24, 2443–2453 (2007).spa
dcterms.referencesKhan, M. R., Hu, J. Y., Riss, S., He, C. Y. & Saedler, H. MPF2-Like-A MADS-Box Genes Control the Inflated Calyx Syndrome in Withania (Solanaceae): Roles of Darwinian Selection. Molecular Biology and Evolution. 26, 2463–2473 (2009).spa
dcterms.referencesSauquet, H. A practical guide to molecular dating. Comptes Rendus Palevol. 12, 355–367 (2013).spa
dcterms.referencesBlandin, P. & Purser, B. Evolution and diversification of neotropcial butterflies: insights from the biogeography and phylogeny of the genus Morpho Fabricius, 1807 (Nymphalidae: Morphinae), with a review of geodynamics of South America. Tropical Lepidoptera Research. 23, 62–85 (2013).spa
dcterms.referencesJørgensen, P. M. et al. Regional patterns of vascular plant diversity and endemism. In Climate Change and Biodiversity in the Tropical Andes. Inter-American Institute for Global Change Research (IAI) and Scientific Committee on Problems of the Environment (SCOPE), 192–203. (eds Herzog, S.K., Martínez, R., Jørgensen, P.M. & Tiessen, H.) 192–203 (2011).spa
dcterms.referencesKnapp, S. Assessing patterns of plant endemism in neotropical uplands. Bot. Rev. 68, 22–37 (2002).spa
dcterms.referencesChamberlain, N. L., Hill, R. I., Kapan, D. D., Gilbert, L. E. & Kronforst, M. R. Polymorphic butterfly reveals the missing link in ecological speciation. Science. 326, 847–850 (2009).spa
dcterms.referencesMerrill, R. M. et al. Disruptive ecological selection on a mating cue. Proc. R. Soc. B. 279, 4907–4913 (2012).spa
dcterms.referencesJiggins, C. D., Naisbit, R. E., Coe, R. L. & Mallet, J. Reproductive isolation caused by colour pattern mimicry. Nature. 411, 302–305 (2001).spa
dcterms.referencesMerrill, R. M. et al. Mate preference across the speciation continuum in a clade of mimetic butterflies. Evolution. 65, 1489–1500 (2011).spa
dcterms.referencesMerrill, R. M., Van Schooten, B., Scott, J. A. & Jiggins, C. D. Pervasive genetic associations between traits causing reproductive isolation in Heliconius butterflies. Proc. R. Soc. B. 278, 511–518 (2011).spa
dcterms.referencesMcClure, M. & Elias, M. Ecology, life history, and genetic differentiation in the Neotropical Melinaea (Nymphalidae: ithomiini) butterflies from north-eastern Peru. Zoological Journal of the Linnean Society. 179, 110–124 (2017).spa
dcterms.referencesElias, M. et al. Phylogenetic hypothesis, pattern of speciation and evolution of wing pattern in neotropical Napeogenes butterflies (Lepidoptera: Nymphalidae). In 7th International Workshop on the Molecular Biology and Genetics of the Lepidoptera August 20–26, 2006, Orthodox Academy of Crete, Kolympari, Crete, Greece. 52pp. Vol. 7:29 (eds Iatrou, K. & Couble, P.) 13–14 (Journal of Insect Science, 2007).spa
dcterms.referencesAntonelli, A., Nylander, J. A. A., Persson, C. & Sanmartin, I. Tracing the impact of the Andean uplift on Neotropical plant evolution. Proc. Natl. Acad. Sci. USA 106, 9749–9754 (2009).spa
dcterms.referencesBloch, J. I. et al. First North American fossil monkey and early Miocene tropical biotic interchange. Nature. 533, 243-+ (2016).spa
dcterms.referencesFarris, D. W. et al. Fracturing of the Panamanian Isthmus during initial collision with South America. Geology. 39, 1007–1010 (2011).spa
dcterms.referencesMontes, C. et al. Middle Miocene closure of the Central American Seaway. Science. 348, 226–229 (2015).spa
dcterms.referencesSedano, R. E. & Burns, K. J. Are the Northern Andes a species pump for Neotropical birds? Phylogenetics and biogeography of a clade of Neotropical tanagers (Aves: Thraupini). J. Biogeogr. 37, 325–343 (2010).spa
dcterms.referencesVelazco, P. M. & Patterson, B. D. Diversification of the Yellow-shouldered bats, Genus Sturnira (Chiroptera, Phyllostomidae), in the New World tropics. Mol. Phylogenet. Evol. 68, 683–698 (2013).spa
dcterms.referencesGoloboff, F., Farris, J. S. & Nixon, K. C. TNT: Tree Analysis using New Technology. Program and documentation, available from the authors, and at http://www.zmuc.dk/public/phylogeny (2003).spa
dcterms.referencesNixon, K.C. Winclada (Beta). Published by the author, Ithaca, NY (1999).spa
dcterms.referencesBrower, A. V. Z. et al. Phylogenetic relationships among the Ithomiini (Lepidoptera: Nymphalidae) inferred from one mitochondrial and two nuclear gene regions. Systematic Entomology. 31, 288–301 (2006).spa
dcterms.referencesWhinnett, A., Brower, A. V. Z., Lee, M. M., Willmott, K. R. & Mallet, J. Phylogenetic utility of Tektin, a novel region for inferring systematic relationships among Lepidoptera. Annals of The Entomological Society Of America. 98, 873–886 (2005).spa
dcterms.referencesStamatakis, A., Hoover, P. & Rougemont, J. A Rapid Bootstrap Algorithm for the RAxML Web Servers. Syst. Biol. 57, 758–771 (2008).spa
dcterms.referencesRonquist, F. et al. MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space. Syst. Biol. 61, 539–542 (2012).spa
dcterms.referencesLanfear, R., Calcott, B., Ho, S. Y. W. & Guindon, S. PartitionFinder: Combined Selection of Partitioning Schemes and Substitution Models for Phylogenetic Analyses. Molecular Biology and Evolution. 29, 1695–1701 (2012).spa
dcterms.referencesMiller, M. A., Pfeiffer, W. & Schwartz, T. Creating the CIPRES Science Gateway for Inference of Large Phylogenetic Trees. SC10 Workshop on Gateway Computing Environments (GCE10) (2010).spa
dcterms.referencesHuelsenbeck, J. P., Larget, B. & Alfaro, M. E. Bayesian phylogenetic model selection using reversible jump Markov chain Monte Carlo. Molecular Biology and Evolution. 21, 1123–1133 (2004).spa
dcterms.referencesWillmott, K. R. & Freitas, A. V. L. Higher-level phylogeny of the Ithomiinae (Lepidoptera: Nymphalidae): classification, patterns of larval hostplant colonization and diversification. Cladistics. 22, 297–368 (2006).spa
dcterms.referencesXie, W. G., Lewis, P. O., Fan, Y., Kuo, L. & Chen, M. H. Improving marginal likelihood estimation for bayesian phylogenetic model selection. Syst. Biol. 60, 150–160 (2011).spa
dcterms.referencesRee, R. H. & Smith, S. A. Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. Syst. Biol. 57, 4–14 (2008).spa
dcterms.referencesPagel, M., Meade, A. & Barker, D. Bayesian estimation of ancestral character states on phylogenies. Syst. Biol. 53, 673–684 (2004).spa
dcterms.referencesRevell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution. 3, 217–223 (2012).spa
dcterms.referencesRabosky, D. L. Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic trees. PLoS ONE. 9 (2014).spa
dcterms.referencesMoore, B. R., Hohna, S., May, M. R., Rannala, B. & Huelsenbeck, J. P. Critically evaluating the theory and performance of Bayesian analysis of macroevolutionary mixtures. Proc. Natl. Acad. Sci. USA 113, 9569–9574 (2016).spa
dcterms.referencesPennell, M. W. et al. geiger v2.0: an expanded suite of methods for fitting macroevolutionary models to phylogenetic trees. Bioinformatics. 30, 2216–2218 (2014).spa
dcterms.referencesMay, M. R. & Moore, B. R. How well can we Ddtect lineage-specific diversification-rate shifts? A simulation study of sequential AIC methods. Syst. Biol. 65, 1076–1084 (2016).spa
dc.publisher.placeLondres, Inglaterraspa
dc.relation.citationendpage17spa
dc.relation.citationissue1spa
dc.relation.citationstartpage1spa
dc.relation.citationvolume7spa
dc.relation.ispartofjournalScientific Reportsspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.subject.agrovocNymphalidae
dc.subject.agrovocurihttp://aims.fao.org/aos/agrovoc/c_30283
dc.subject.proposalNeotropic
dc.subject.proposalPteronymia
dc.subject.proposalDanainae
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.relation.citationeditionScientific Reports. 7(1), pág. 1-17, 2017spa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

2008- 2021 ResearchGate GmbH. Reservados todos los derechos.
Excepto si se señala otra cosa, la licencia del ítem se describe como 2008- 2021 ResearchGate GmbH. Reservados todos los derechos.