Mostrar el registro sencillo del ítem

dc.date.accessioned2021-04-19T20:30:44Z
dc.date.available2021-04-19T20:30:44Z
dc.date.issued2020-12-04
dc.identifier.isbn978-958-8628-61-5
dc.identifier.urihttps://dspace.tdea.edu.co/handle/tdea/1127
dc.description.abstractLa contaminación generada por el desarrollo tecnológico es un problema actual, que ocasiona el deterioro de fuentes hídricas, smog fotoquímico, detrimento de la fauna y la flora, aumento de los efectos nocivos sobre la salud humana, entre otros. Colombia y específicamente el Valle de Aburrá no están aisladas de esta problemática, por lo que la implementación de soluciones prácticas y económicas, como las tecnologías limpias, permiten disminuir el problema de contaminación, sin tener que detener el desarrollo industrial. Las tecnologías avanzadas de oxidación (TAO) son tecnologías limpias y viables como alternativas o complementos a las técnicas convencionales de tratamiento, ya que pueden oxidar gran cantidad de compuestos. La base de las TAO es la generación de radicales hidroxilos (HO*), los cuales tienen la capacidad de eliminar una gran cantidad de moléculas orgánicas e inorgánicas. Adicionalmente, las TAO pueden utilizar la radiación UV aportada por el sol, siendo Colombia un país privilegiado por sus altos niveles de radiación solar. Dentro de las TAO se encuentra la fotocatálisis heterogénea (FH), que permite el tratamiento eficiente de contaminantes acuosos y gaseosos, gracias a su comportamiento no selectivo, lo que facilita su utilización en el tratamiento de diferentes tipos de contaminantes. El dióxido de titanio (TiO2) es el semiconductor más utilizado en la FH. Esto se debe a su alta estabilidad, actividad fotocatalítica, capacidad para la oxidación avanzada y bajo costo.spa
dc.description.tableofcontents1.Procesos avanzados de oxidación como una alternativa para la eliminación de contaminantes.117 P.spa
dc.format.extent46 P.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherSello Editorial Tecnológico de Antioquiaspa
dc.rightshttps://tdea.edu.co/images/tdea/galeria/ebooks_sello_editorial/gestion_riesgo_medio_ambiente.pdfspa
dc.sourcehttps://tdea.edu.co/images/tdea/galeria/ebooks_sello_editorial/gestion_riesgo_medio_ambiente.pdfspa
dc.titleProcesos avanzados de oxidación como una alternativa para la eliminación de contaminantesspa
dc.typeCapítulo - Parte de Librospa
dcterms.referencesAlmquist, C., & Biswas, P. (2002). Role of synthesis method and particle size nanostructured TiO 2 on its photoactivity. Journal of Catalysis, 212(2), 145-156spa
dcterms.referencesÁrea Metropolitana Del Valle De Aburrá. (AMVA). (2013). Disminución de los niveles de contaminación del aire. http://www.metropol.gov.co/aire/ Presentacion_Aire.pdfspa
dcterms.referencesÁrea Metropolitana Del Valle De Aburrá. (AMVA). (2019). Gaceta Oficial Nº4588.spa
dcterms.referencesÁrea Metropolitana Del Valle De Aburrá (AMVA) y Universidad Pontificia Bolivariana. (2018). Actualización inventario de emisiones atmosféricas del Valle de Aburrá. Área Metropolitana del Valle de Aburráspa
dcterms.referencesAsgar, A., Raman, A., & Daud, W. (2015). Advanced oxidation processes for in-situ production of hydrogen peroxide/ hydroyl radical for textile wastewater treatment: a review. Journal of Cleaner Production, 87, 826-838spa
dcterms.referencesBaes, C., & Mesner R. (1976). The hydrolysis of cations. Willwyspa
dcterms.referencesBeyers, E., Cool, P., & Vansant, E. (2006). Stabilisation of mesoporous TiO2 by different bases influencing the photocatalytic activity. Microporous and Mesoporous Materials, 99(1), 112-117spa
dcterms.referencesBlesa, M. (2001).Eliminación de Contaminantes por Fotocatálisis Heterogénea, Corporación Iberoamericana Ciencia y Tecnología para el Desarrollo (CYTED). Gráficaspa
dcterms.referencesCampostrini, R., Ischia, M., & Palmisano, L. (2003). Pyrolisis study of Solgel derived TiO2 powders. Part 1: TiO2 anatase prepared by reacting titanium (lV) isopropoxide with formic acid. Journal of Thermal Analysis and Calorimetry, 71, 997-1010spa
dcterms.referencesCarp, O., Huisman, C., & Reller, A. (2004). Photoinduced reactivity of titanium dioxide. Progress in Solid States Chemistry, 32(1-2), 133-177spa
dcterms.referencesColmenares, J., Aramendia, M., Marianas, A., Marinas, J., & Urbano, F. (2006). Synthesis, characterization and photocatalytic activity of different metaldoped titania systems. Applied Catalysis A: General, 306, 120-127spa
dcterms.referencesChoi, H., Stathatos, E., & Dionysiou, D. (2006). Synthesis of nanocrystalline photocatalytic TiO2 thin films and particles using method modified with nonionic surfactants. Thin Solid Films, 510(1-2), 107-114.spa
dcterms.referencesCrisan, M., Braileanu, A., Raileanu, M., Crisan, D., Teodorescu, V., Birjega, R., Marinescu, V., Madarasz, J., & Pokol, G. (2007). TiO2-based nanopowders obtained from different Ti-alkoxides. Journal of Thermal Analysis and Calorimetry, 88, 171-176.spa
dcterms.referencesDe la fuente, D., Madueño, J., y Gutiérrez. F. (1998). Optimización de sistemas de destrucción de VOCs. Ingeniería química Madrid, 345,151-158spa
dcterms.referencesEnvironmental Protection Agenc-United States. (EPA). (2011). An Introduction to Indoor Air Quality (IAQ), Volatile Organic Compounds (VOCs). http:// www.epa.gov/iaq/voc.htmlspa
dcterms.referencesFang, W., Xing, M., & Zhans, J. (2017). Modifications on reduced titanium dioxide photocatalysts: a review. Journal of photochemistry and photobiology C: Photochemistry, 32, 21-39spa
dcterms.referencesFujishima, A., & Zhang, X. (2006). Titanium dioxide photocatalysis: present situation and future approaches. Comptes Rendus Chimie, 9(5-6), 750-760spa
dcterms.referencesGaleano, L., Valencia, S., Restrepo, G., & Marín, J. (2019). Dry-co-grinding of doped TiO2 with nitrogen, silicon or selenium for enhanced photocatalytic activity under UV/visible and visible light irradiation for environmental applications. Materials Science in Semiconductor Processing, 91(1), 47-57spa
dcterms.referencesGhamsari, M. & Bahramian, A. (2008). High transparent sol-gel derived nanostructured TiO2 thin film. Materials Letter, 62(3), 361-364spa
dcterms.referencesGranda, F., Sánchez, C., Marín, J., & Restrepo, G. (2011). Estudio teórico experimental de la ruta de degradación fotocatalítica de metanol en fase gas en ausencia de agua. Sometido a la Revista de la Universidad de Zulia.spa
dcterms.referencesGuillard, C., Beaugiraud, B., Dutriez, C., Herrmann, J., Jaffrezic, H., & JaffrezicRenault, N. (2002). Physicochemical properties and photocatalytic activities of TiO2-films prepared by sol-gel methods. Applied Catalysis B: Environmental, 39(1), 331-342spa
dcterms.referencesHarizanov, O., & Harizanov, A. (2000). Development and investigation of Solgel solutions for the formation of TiO2 coating. Solar Energy Materials and Solar Cells, 63(2), 185-195spa
dcterms.referencesHidalgo, M., Aguilar, M., Maicu, M., Navio, J., & Colon, G. (2007). Hydrothermal preparation of highly photoactive TiO2 nanoparticles. Catalysis Today, 129(1-2), 50-58spa
dcterms.referencesHoffman, A., Carraway, E., & Hoffman M. (1994). Photocatalytic Production of H2O2 and Organic Peroxides on Quantum-Sized Semiconductor Colloids. Environmental Science and Technology, 28(5), 776-785spa
dcterms.referencesHolker, C., Jadhav, A., Pinjari, D., Mahamuni, N., & Pandit A. (2016). A critical review on textile wastewater treatment: Possible aproaches. Journal of Environmental Management, 182, 351-366spa
dcterms.referencesHossain, F., Sheppard, L., Nowotny, J., & Murch G. (2008). Optical properties of anatasa and rutile titanium dioxide: Ab initio calculations for pure and anion-doped material. Journal of Physics and Chemistry of Solids, 69(7), 1820-1828spa
dcterms.referencesIlisz, I., Làzslò, Z., & Dombi, A. (1999). Investigation of photodescomposition of phenol in near-UV-irradiated aqueous TiO2 suspensions. I: Effect of charge-trapping species on the degradation kinetics. Applied Catalysis A: General, 180(1-2), 25-33.spa
dcterms.referencesIwasaki, M., Hara, M., & Ito, S. (1998). Facile synthesis of nanocrystalline anatasa particles from tatanyl sulfate. Journal of Materials Science Letters, 17, 1769-1771.spa
dcterms.referencesKallala, M., Sanchez, C., & Cabane, B. (1993). Structures of inorganic polymers in sol-gel processes based on titanium oxide. Physical Rewiew E, 48(5), 3692-3704spa
dcterms.referencesKim, C., Moon, B., Park, J., & Son, S. (2003). Synthesis of nanocrystaline TiO2 toluene by a solvothermal route. Journal of Crystal Growth, 254(3-4), 405-410spa
dcterms.referencesKim, S., & Shim, W. (2008). Recycling the copper based spent catalyst for catalytic combustion of VOCs. Applied Catalysis B: Environmental, 79(2), 149-156spa
dcterms.referencesKhodja, A., Sehili, T., Pilichowski, J., & Boule, P. (2001). Photocatalytic degradation of 2-phenylphenol on TiO2 and ZnO in aqueous suspensions. Journal of photochemistry and photobiology A: Chemistry, 141(2-3), 231-239spa
dcterms.referencesManrique, L., Laguna, E., Osorio, E., Serna, E., & Torres, R. (2017). Tratamiento de aguas contaminadas con colorantes mediante fotocatálisis con TiO2 usando luz artificial y solar. Producción + Limpia, 12(2), 50-60.spa
dcterms.referencesMatijevic, E., Budnik, M., & Meites, L. (1997). Preparation and mechanism of formation of titanium dioxide hydrosols of narrow size distribution. Journal of Colloid Interface and Science, 61(2), 302-311.spa
dcterms.referencesMejía, M., Marín, J., Restrepo, G., Rios L., Pulgarín, C., & Kiwi, J. (2010). Preparation, testing and performance of a TiO2/polyester photocatalyst for the degradation of gaseous methanol. Applied Catalysis B: Environmental, 94(1-2), 166-172.spa
dcterms.referencesMejía, M., Marín, J., Restrepo, G., Pulgarín, C., & Kiwi, J. (2011). Photocatalytic evaluation of TiO 2/nylon systems prepared at different impregnation times. Catalysis Today, 161(1), 15-22spa
dcterms.referencesMills, A., & Le Hunte, S. (1997). An overview of semiconductor photocatalysis. Journal of Photochemistry and Photobiology A: Chesmistry, 108(1), 1-35.spa
dcterms.referencesMinisterio del Medio Ambiente. (MinAmbiente). (21 de enero de 2002). Resolución N° 0058. http://parquearvi.org/wp-content/ uploads/2016/11/resolucion-0058-de-2002.pdf.spa
dcterms.referencesMohammad, H., & Bahnemann, D. (2012). The role of electron transfer in photocatalysis: fact and fictions. Applied Catalysis B. Environmental, 128, 91-104spa
dcterms.referencesMojica, C., Pasol, E., Dizon, M., Kiat, W., Lim, T., Domínguez, J., Valencia, V., & Tuaño, B. (2020). Chronic methanol toxicity through topical and inhalational routespresenting as vision loss and restricted diffusion of the optic nerves on MRI: A case report and literature review. eNeurologicalSci, 20, 100258.spa
dcterms.referencesMonllor-Satoca, D., Goméz, R., González-Hidalgo, M., & Salvador P. (2007). The “direct-indirect” model: An alternative kinetic approach in heterogeneous photocatalysis based on the degree of interaction of dissolved pollutant with the semiconductor surface. Catalysis Today, 129, 247-255spa
dcterms.referencesNazir, M., Khan, N., Cheng, C., Ahmad Shah S., Najam, T., Arshad, M., Shariff, A., Akhtar, S., & Rehman, A. (2020). Surface induced growth of ZIF- 67 at Co-layered double hydroxide: Removal of methylene blue and methyl orange from water. Applied Clay Science, 190, 105564spa
dcterms.referencesNelson, R., Flakker, C., & Muggli, D. (2007). Photocatalytic oxidation of methanol using titania-based fluidized beds. Applied Catalysis B: Environmental, 69(3-4), 189-195spa
dcterms.referencesNolan, N., Seery, M., & Pilla, S. (2009). Spectroscopic Investigation of the Anatase-to-Rutile Transformation of Sol−Gel-Synthesized TiO 2 Photocatalysts. Journal of Physical Chemistry C, 113, 16151- 16157spa
dcterms.referencesOhno, T., Sarukawa, K., Tokieda, K., & Matsumura, M. (2001). Morphology of a TiO 2 photocatalyst (Degussa, P-25) consisting of anatase and rutile crystalline phases. Journal of Catalysis, 203(1), 82-86.spa
dcterms.referencesPalmer, F., Eggins, B., & Coleman, H. (2002). The effect of operational parameters on the photocatalytic degradation of humic acid. Journal of Photochemistry and Photobiology A: Chemistry, 148(1-3), 137-143spa
dcterms.referencesRaman, C., & Kanmani, R. (2016). Textile dye degradation using nano zero valent iron: a review. Journal of Environmental Management, 177, 341-355spa
dcterms.referencesSalvador, P. (2007). On the nature of photogenerated radical species active in the oxidative degradation of dissolved pollutants with TiO2 aqueous suspensions: A revision in the light of the electronic structure of adsorbed water. Journal of Physical Chemistry C, 111, 17038-17043spa
dcterms.referencesSharma, V., Triantis, T., & Dionysiou, D. (2012). Destruction of microcystins by conventional and advanced oxidation processes: a review. Separation and purification Technology, 91, 3-17spa
dcterms.referencesTokode, O., Prabhu, R., Lawton, L., & Robertson, P. (2016). Controlled periodic illumination in semiconductor photocatalysis. Journal of Photochemistry and photobiology A: Chemistry, 319-320, 96-106.spa
dcterms.referencesTong, T., Zhang, J., Tian, B., Chen, F., & He, D. (2008). Prepatation of Fe3+- doped TiO2 catalysts by controlled hydrolysis of titanium alkoxide and study on their photocatalytic activity for methyl orange degradation. Journal of Hazardous Materials, 155(3), 572-579spa
dcterms.referencesTruong, Q., Dien, L., Vo, D., & Le, T. (2017). Controled synthesis of titania using wáter-soluble titanium complexes: a review. Journal of Solid State Chemistry, 251, 143-163spa
dcterms.referencesTung, W., & Daoud, W. (2011). Self-cleaning fibers via nanotechnology: a virtual reality. Journal of Materials Chemistry, 21(22), 7858-7869spa
dcterms.referencesTurchi, C., Rabago, R., & Jassal, A. (1995). Destruction of Volatile Organic Compound (VOC) Emissions by Photocatalytic Oxidation (PCO). SEMATECH, 1-21.spa
dcterms.referencesValencia, S., Cataño, F., Rios, L., Restrepo, G., & Marín, J. (2011). A new kinetic model for heterogeneous photocatalysis with titanium dioxide: Case of non-specific adsorption considering back reaction. Applied Catalyis B: Environmental, 104(3-4), 300-304spa
dcterms.referencesValencia, S., Marín, J., & Restrepo, G. (2010). Study of bandgap of synthesized titanium dioxide nanoparticules using the sol-gel method and hydrothermal treatment. The open Materials Science Journal, 4, 9-14spa
dcterms.referencesVajnhandl, S., & Valh, J. (2014). The status of wáter reuse in European textile sector. Journal of Environmental Management, 14, 29-35spa
dcterms.referencesXing, Z., Zhang, J., Cui, J., Yin, J., Zhao, T., Kuang, J., Xiu, Z., Wan, N., & Zhou, W. (2018). Recent advances in floating TiO2-based photocatalysts for environmental application. Applied Catalysis B: Environmental, 225, 452-467spa
dcterms.referencesWang, H., Wu, Z., Zhao, W., & Guan, B. (2007). Photocatalytic oxidation of nitrogen oxides using TiO2 loading on woven glass fabric. Chemosphere, 66(1), 185-190spa
dcterms.referencesWatson, S., Beydound, D., Scott, J., & Amal, R. (2003). The effect of the preparation method on the photoactivity of crystalline TiO2 particles. Chemical Engineering Journal, 95, 2003, 213-220spa
dcterms.referencesWen, J., Li, X., Liu, W., Fang, Y., Xie, J., & Xu, Y. (2015). Photocatalysis fundamentals and surface modification of TiO 2 nanomaterial. Chinese Lournal of Catalysis, 36, 2049-2070spa
dcterms.referencesWorld Health Organization. (2014). Information Note Methanol Poisoning Outbreaks. https://www.who.int/environmental_health_emergencies/ poisoning/methanol_information.pdfspa
dcterms.referencesYao, K., Liu, Y., Yang, H., Yuan, J., & Shan, S. (2020). Polyaniline-modified 3D-spongy SnS composites for the enhanced visible-light photocatalytic degradation of methyl orange. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 630, 125240spa
dcterms.referencesYin, S., Fujishiro, Y., Wu, J., Aki, M., & Sato, T. (2003). Synthesis and photocatalytic properties of fibrous titania by solvothermal reactions. Journal of Materials Procesing Technology, 137(1-3), 45-48spa
dcterms.referencesYönten., V., Sanyürek, K., & Kivanç, M. (2020). A thermodynamic and kinetic approach to adsorption of methyl orange from aqueous solution using a low cost activated carbon prepared from Vitis vinifera L. Surfaces and Interfaces, 20, 100529spa
dcterms.referencesZangeneh, H., Zinatizadeh, A., Habbi, M., Akia, M., & Isa, M. (2015). Photocatalytic oxidation of organic dyes and pollutants in wastewater using different modified titanum dioxide: a comparative review. Journal of Industrial and Engineering Chemistry, 26, 1-36spa
dcterms.referencesZaharescu, M., & Crisan, M. (1997). TiO2-based porous materials obtained from gels, in different experimental conditions. Journal of Sol-Gel Science and Technology, 8(1), 249-253spa
dcterms.referencesZheng, X., Zhang, D., Gao, Y., Wu, Y., Liu, Q., & Zhu, X. (2019). Synthesis and characterization of cubic Ag/TiO2 nanocomposites for the photocatalytic degradation of methyl orange in aqueous solutions. Inorganic Chemistry Communications, 110, 107589spa
dcterms.referencesZou, L., Luo, Y., Hooper, M., & Hu, E. (2006). Removal of VOCs by photocatalysis process using adsorption enhanced TiO2-SiO2 catalyst. Chemical Engineering and Processing: Process Intensification, 45(11), 959-964spa
dc.description.edition1a ed.spa
dc.relation.citationendpage162 Pspa
dc.relation.citationstartpage117 P.spa
dc.relation.ispartofbookGestión del riesgo y medio ambientespa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.subject.proposalTecnologías avanzadas de oxidación (TAOs)spa
dc.subject.proposalFotocatálisis heterogéneaspa
dc.subject.proposalRadiaciónspa
dc.subject.proposalDióxido de titaniospa
dc.subject.proposalDegradación de contaminantesspa
dc.subject.unescoCiencia
dc.subject.unescoOrganización y gestión
dc.type.coarhttp://purl.org/coar/resource_type/c_3248spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/bookPartspa
dc.type.redcolhttps://purl.org/redcol/resource_type/CAP_LIBspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem