Mostrar el registro sencillo del ítem

dc.contributor.authorRíos-Montesa, Karina A.
dc.contributor.authorPino, Nancy J.
dc.contributor.authorPeñuela M, Gustavo
dc.date.accessioned2021-04-19T20:30:09Z
dc.date.available2021-04-19T20:30:09Z
dc.date.issued2020-12-04
dc.identifier.isbn978-958-8628-61-5
dc.identifier.urihttps://dspace.tdea.edu.co/handle/tdea/1126
dc.description.abstractUn creciente interés en el estudio del efecto de la adición de biochar al suelo ha sido suscitado debido al impacto de la enmienda en el mejoramiento de la calidad de diferentes tipos de suelo. En este trabajo se analizó el efecto a corto plazo del biochar (10 t ha-1) sobre las propiedades fisicoquímicas de un suelo de extracción carbonífera y su correlación con la dinámica de las comunidades bacterianas en la rizósfera de Brachiaria decumbens. Adicionalmente, se evaluaron los indicadores de productividad de la planta durante el proceso de rehabilitación.spa
dc.description.tableofcontents1.Efecto del biochar en las propiedades de un suelo antrópico de extracción carbonífera durante su proceso de rehabilitación y su correlación con las comunidades bacterianas. 7spa
dc.format.extent50 P.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherSello Editorial Tecnológico de Antioquiaspa
dc.rightshttps://tdea.edu.co/images/tdea/galeria/ebooks_sello_editorial/gestion_riesgo_medio_ambiente.pdfspa
dc.sourcehttps://tdea.edu.co/images/tdea/galeria/ebooks_sello_editorial/gestion_riesgo_medio_ambiente.pdfspa
dc.titleEfecto del biochar en las propiedades de un suelo antrópico de extracción carbonífera durante su proceso de rehabilitación y su correlación con las comunidades bacterianasspa
dc.typeCapítulo - Parte de Librospa
dcterms.referencesAmeloot, N., Graber, R., Verheijen, G., & De Neve, S. (2013). Interactions between biochar stability and soil organisms: Review and research needs. European Journal of Soil Science, 64(4), 379-390spa
dcterms.referencesArranz-González, J. (2011). Suelos mineros asociados a la minería de carbón a cielo abierto en España: una revisión. Boletín Geológico y Minero, 122(2), 3-16spa
dcterms.referencesArroyave, C., Tolrà, R., Thuy, T., Barceló, J., & Poschenrieder, C. (2013). Differential aluminum resistance in Brachiaria species. Environmental and Experimental Botany, 89, 11-18spa
dcterms.referencesBadri, D., Weir, T., Van Der Lelie, D., & Vivanco, J. (2009). Rhizosphere chemical dialogues: plant-microbe interactions. Current opinion in biotechnology, 20, 642-650spa
dcterms.referencesBashan, Y., Puente, M., Rodríguez-Mendoza, M., Toledo, G., Holguin, G., FerreraCerrato, R., & Pedrin, S. (1995). Survival of Azospirillum brasilense in the Bulk Soil and Rhizosphere of 23 Soil Types. Applied and Environmental Microbiology, 61(5), 1938-1945.spa
dcterms.referencesBeesley, L., Moreno-Jiménez, E., Gomez-Eyles, J., Harris, E., Robinson, B., & Sizmur, T. (2011). A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environmental Pollution, 159, 3269-3282.spa
dcterms.referencesBolger, A., Lohse, M., & Usadel, B. (2014). Trimmomatic: A Flexible Trimmer for Illumina Sequence Data. Bioinformatics, 30, 2114-2120spa
dcterms.referencesBurrell, L., Zehetner, F., Rampazzo, N., Wimmer, B., & Soja, G. (2016). Long-term effects of biochar on soil physical properties. Geoderma, 282, 96-102spa
dcterms.referencesCaporaso, J., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F., Costello, E., Fierer, N., Gonzalez-Peña, A., Goodrich, J., Gordon, J., Huttley, G., Kelley, S., Knights, D., Koenig, J., Ley, R., Lozupone, C., McDonald, D., Muegge, B., Pirrung, M., Reeder, J., … Knight, R. (2010). QIIME Allows Analysis of High-Throughput Community Sequencing Data. Nature Methods, 7, 335-336.spa
dcterms.referencesChen, J., Li, S., Liang, C., Xu, Q., Li, Y., Qin, H., & Fuhrmann, J. (2017). Response of microbial community structure and function to short-term biochar amendment in an intensively managed bamboo (Phyllostachys praecox) plantation soil: Effect of particle size and addition rate. Science of the Total Environment, 574, 24-33spa
dcterms.referencesChintala, R., Mollinedo, J., Schumacher, T., Malo, D., & Julson, J. (2014a). Effect of biochar on chemical properties of acidic soil. Archives of Agronomy and Soil Science, 60(3), 393-404spa
dcterms.referencesChintala, R., Schumacher, T., Kumar, S., Malo, D., Rice, J., Bleakley, B., Chilom, G., Clay, D., Julson, J., Papiernik, S., & Rong Gu, Z. (2014b). Molecular characterization of biochars and their influence on microbiological properties of soil. Journal of Hazardous Materials, 279, 244-256.spa
dcterms.referencesChintala, R., Schumacher, T., McDonald, L., Clay, D., Malo, D., Papiernik, S., Clay, S., & Julson, J. (2014c). Phosphorus sorption and availability from biochars and soil biochar mixtures. Clean Soil Air Water, 42(5), 626-634spa
dcterms.referencesDai, J., Wu, H., Zhang, C., Zeng, G., Liang, J., Guo, S., Li, X., Huang, L., Lu, L., & Yuan, Y. (2016). Responses of Soil Microbial Biomass and Bacterial Community Structure to Closed-off Management (an Ecological Natural Restoration Measures): A Case Study of Dongting Lake Wetland, Middle China. Journal of Bioscience and. Bioengineering, 122, 345-350spa
dcterms.referencesDíaz, L. (2017). Remediación de suelos alterados por actividad de minería del carbón a cielo abierto, mediante aplicación de biochar procedente de residuos biomásicos de la palma de aceite en la zona carbonífera del departamento del cesar [Tesis de doctorado]. Universidad de Antioquia. http://hdl.handle. net/10495/9684spa
dcterms.referencesDíaz, L., Arranz, J., & Peñuela, G. (2017). Characterization and potential use of biochar for the remediation of coal mine waste containing efflorescent salts. Sustinability, 9(2100), 1-11spa
dcterms.referencesEdgar, R. (2010). Search and Clustering Orders of Magnitude Faster than BLAST. Bioinformatics, 26, 2460-2461.spa
dcterms.referencesFarrell, M., Kuhn, T., Macdonald, L., Maddern, T., Murphy, D., Hall, P., Singh, B., Baumann, B., Krull, E., & Baldock, J. (2013). Microbial utilisation of biocharderived carbon. Science of the Total Environment, 465, 288-297spa
dcterms.referencesFellet, G., Marchiol, L., Delle Vedove, G., & Peressotti, A. (2011). Application of biochar on mine tailings: effects and perspectives for land reclamation. Chemosphere, 83, 1262-1297spa
dcterms.referencesFranzluebbers, J., Wright, F., & Stuedemann, J. (2000). Soil aggregation and glomalin under pastures in the southern Piedmont USA. Soil Science Society of America Journal, 64, 1018-1026spa
dcterms.referencesGraber, E., Meller Harel, Y., Kolton, M., Cytryn, E., Silber, A., David, D., Tsechansky, L., Borenshtein, M., & Elad, Y. (2010). Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media. Plant and Soil, 337(1-2), 481-496spa
dcterms.referencesGrifoni, A., Bazzicalupo, M., Di Serio, C., Fancelli, S., & Fani, R. (1995). Identification of Azospirillum strains by restriction fragment length polymorphism of the 16S rDNA and of the histidine operon. FEMS Microbiology Letters, 127, 85-91.spa
dcterms.referencesGul, S., Whalen, J., Thomas, B., Sachdeva, V., & Deng, H. (2015). Physico-chemical properties and microbial responses in biochar-amended soils: Mechanisms and future directions. Agriculture, Ecosystems and Environment, 206, 46-59spa
dcterms.referencesHe, X., Li, Y., & Zhao, L. (2010). Dynamics of arbuscular mycorrhizal fungi and glomalin in the rhizosphere of Artemisia ordosica Krasch. in Mu Us sandland, China. Soil Biology and Biochemistry, 42, 1313-1319.spa
dcterms.referencesHu, Y., Peng, J., Yuan, S., Shu, X., Jiang, S., Pu, Q., Ma, K., Yuan, C., Chen, G., & Xiao, H. (2016). Influence of ecological restoration on vegetation and soil microbiological properties in alpine-cold semi-humid desertified land. Ecological Engineering, 94, 88-94.spa
dcterms.referencesInforme de Monitoreo y Seguimiento para Determinar la Calidad del Horizonte A en Términos de Parámetros Fisicoquímicos en la Mina. (2013). Información secundaria otorgada por la empresa mineraspa
dcterms.referencesIzquierdo, I., Caravaca, F., Alguacil, M., Hernández, G., & Roldán, A. (2005). Use of microbiological indicators for evaluating success in soil restoration after revegetation of a mining area under subtropical conditions. Applied Soil Ecology, 30(1), 3-10spa
dcterms.referencesJarma, A., y Maza, L. (2012). Aspectos fisiológicos y bromatológicos de Brachiaria humidicola. Revista CES Medicina Veterinaria y Zootecnia, 7(1), 87-98spa
dcterms.referencesJiang, J., Xu, R. K, Jiang, Y., & Li, Z. (2012). Immobilization of Cu(II), Pb(II) and Cd(II) by the addition of rice straw derived biochar to a simulated polluted Ultisol. Journal of Hazardous Materials, 229-230, 145-150spa
dcterms.referencesJiao, Y., Joann, K., & Whalen, H. (2007). Phosphate sorption and release in a sandyloam soil as influenced by fertilizer sources. Soil Science Society of America Journal, 71, 118-124spa
dcterms.referencesJiao, J., Zhang, Z., Bai, W., Jia, Y., & Wang, N. (2012). Assessing the ecological success of restoration by afforestation on the Chinese Loess Plateau. Restoration Ecology, 20(2), 240-249.spa
dcterms.referencesJones, D., Rousk, J., Edwards-Jones, G., DeLuca, T., & Murphy, D. (2012). BiocharMediated Changes in Soil Quality and Plant Growth in a Three Year Field Trial. Soil Biology & Biochemistry, 45, 113-124spa
dcterms.referencesJoseph, S., Camps Arbestain, M., Lin, Y., Munroe, P., Chia, C., Hook, J., van Zwieten, L., Kimber, S., Cowie, A., Singh, B., Lehmann, J., Foidl, N., Smernik, R., & Amonette, J. (2010). An investigation into the reactions of biochar in soil. Australian Journal of Soil Research, 48, 501-515spa
dcterms.referencesKolde, R. (2015). Package “pheatmap” R Software. License GPL-2. https://cran.rproject.org/web/packages/pheatmap/pheatmap.pdfspa
dcterms.referencesKolton, M., Meller Harel, Y., Pasternak, Z., Graber, E., Elad, Y., & Cytryn, E. (2011). Impact of biochar application to soil on the root-associated bacterial community structure of fully developed greenhouse pepper plants. Applied and Environmental Microbiology, 77(14), 4924-4930.spa
dcterms.referencesKuzyakov, Y., Subbotina, I., Chen, H., Bogomolova, I., & Xu, X. (2009). Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling. Soil Biology & Biochemistry, 41, 210-219spa
dcterms.referencesLehmann, J., Rillig, M. C., Thies, J., Masiello, C., Hockaday, W., & Crowley, D. (2011). Biochar Effects on Soil Biota – A Review. Soil Biology and Biochemestry, 43, 1812-1836spa
dcterms.referencesLi, Y., Wen, H., Chen, L., & Yin, T. (2014). Succession of Bacterial Community Structure and Diversity in Soil along a Chronosequence of Reclamation and Re-Vegetation on Coal Mine Spoils in China. PLoS ONE, 9(12), 1-24spa
dcterms.referencesLiu, C., Ding, N., Fu, Q., Brookes, P., Xu, J., Guo, B., Lin, Y., Li, H., & Li, N. (2016). The Influence of Soil Properties on the Size and Structure of Bacterial and Fungal Communities along a Paddy Soil Chronosequence. European Journal of Soil Biology, 76, 9-18spa
dcterms.referencesLone, A., Najar, G., Ganie, M., Sofi, J., & Ali, T. (2015). Biochar for Sustainable Soil Health: A Review of Prospects and Concerns. Pedosphere, 25(5), 639-653.spa
dcterms.referencesLuo, S., Wang, S., Tian, L., Li, S., Li, X., Shen, Y., & Tian, C. (2017). Long-term biochar application influences soil microbial community and its potential roles in semiarid farmland. Applied Soil Ecology, 117-118, 10-15.spa
dcterms.referencesMajor, J., Lehmann, J., Rondon, M., & Goodale, C. (2010). Fate of soil- applied black carbon: downward migration, leaching and soil respiration. Global Change Biology, 16, 1366-1379spa
dcterms.referencesOlsen, S., & Sommers, L. (1982). Phosphorus. En Page A., R. Miller & D. Keeney (Ed.), Methods of soil analysis; chemical and microbiological properties (pp. 403- 430). American Society of Agronomy/Soil Science Society of America.spa
dcterms.referencesQi, Y., Chen, T., Pu, J., Yang, F., Shukla, M., & Chang, Q. (2018). Response of soil physical, chemical and microbial biomass properties to land use changes in fixed desertified land. Catena, 160, 339-344spa
dcterms.referencesQuilliam, R., Glanville, H., Wade, S., & Jones, D. (2013). Life in the charosphere-Does biochar in agricultural soil provide a significant habitat for microorganisms? Soil Biology and Biochemistry, 65, 287-293spa
dcterms.referencesQuilliam, R., Glanville, H., Wade, S., & Jones, D. (2013). Life in the charosphere-Does biochar in agricultural soil provide a significant habitat for microorganisms? Soil Biology and Biochemistry, 65, 287-293spa
dcterms.referencesRios-Montes, K. (2019). Dinámica microbiana asociada a Brachiaria decumbens en la rehabilitación de suelos antrópicos de extracción carbonífera aplicando biochar como enmienda [Tesis de doctorado, no publicada]. Universidad de Antioquiaspa
dcterms.referencesRios-Montes, K., Pino, N., Peñuela G., & Mendoza, A. (2019). Response of Rhizobacterial Community to Biochar Amendment in Coal Mining Soils with Brachiaria decumbens as Pioneer Plant. Soil and Sediment Contamination: An International Journal, 1-18spa
dcterms.referencesSegura, M. (1997). Almacenamiento y fijación de carbono en Quercus costarricensis, en un bosque de altura en la cordillera de Talamanca, Costa Rica [Tesis de pregrado, no publicada]. Universidad Nacional de Costa Rica.spa
dcterms.referencesShaoxuan, H., Zongsuo, L., Ruilian, H., Yong, W., & Guobin, L. (2016). Soil carbon dynamics during grass restoration on abandoned sloping cropland in the hilly area of the Loess Plateau, China. Catena, 137, 679-685spa
dcterms.referencesSharma, S., Sayyed, R., Trivedi, M., & Gobi, T. (2013). Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus, 2, 587-601spa
dcterms.referencesShrestha, R., & Lal, R. (2006). Ecosystem carbon budgeting and soil carbon sequestration in reclaimed mine soil. Environment international, 32, 781-796spa
dcterms.referencesSinha, S., Masto, R., Ram, L., Selvi, V., Srivastava, N., Tripathi, R., & George, J. (2009). Rhizosphere soil microbial index of tree species in a coal mining ecosystem. Soil Biology and Biochemistry, 41, 1824-1832.spa
dcterms.referencesSistema de Información Minero Colombiano. (SIMCO). (s. f.). Información y cifras sectoriales de la minería de carbón. Ministerio de Minas y Energía, Ingeominas, Servicio Geológico Colombiano y Agencia Nacional de Minería. https://www1. upme.gov.co/simco/Cifras-Sectoriales/Paginas/Informacion-estadisticaminera.aspx.spa
dcterms.referencesSolís-Domínguez, F., Vargas, A., Chorover, J., & Maier, R. (2011). Effect of arbuscular mycorrhizal fungi on plant biomass and the rhizosphere microbial community structure of mesquite grown in acidic lead/zinc mine tailings. Science of the Total Environment, 409, 1009-1016spa
dcterms.referencesSouza, R., Silva, D., Oliveira, J., Goto, B., Silva, F., Sampaio, E., & Maia, L. (2012). Use of mycorrhizal seedlings on recovery of mined dunes in northeastern Brazil. Pedobiologia, 55, 303-309spa
dcterms.referencesSteinbeiss, S., Gleixner, G., & Antonietti, M. (2009). Effect of Biochar Amendment on Soil Carbon Balance and Soil Microbial Activity. Soil Biology & Biochemistry, 41, 1301-1310spa
dcterms.referencesSun, Z., Moldrup, P., Elsgaard, L., Arthur, E., Bruun, E., Hauggaard-Nielsen, H., & Wollesen, L. (2013). Direct and indirect short-term effects of biochar on physical characteristics of an arable sandy loam. Soil Science, 178(9), 465- 473.spa
dcterms.referencesSun, D., Meng, J., Xu, E., & Chen, W. (2016). Microbial Community Structure and Predicted Bacterial Metabolic Functions in Biochar Pellets Aged in Soil after 34 Months. Applied Soil Ecology, 100, 135143.spa
dcterms.referencesUssiri, D., Jacinthe, P., & Lal, R. (2014). Methods for determination of coal carbon in reclaimed minesoils: A review. Geoderma, 214-215, 155-167.spa
dcterms.referencesVan der Heijden, M., & Horton, T. (2009). Socialism in soil? The importance of mycorrhizal fungal networks for facilitation in natural ecosystems. Journal of Ecology, 97(6), 1139-1150spa
dcterms.referencesVital, L., Narvaez, J., Cruz, M., Ortiz, E., Sánchez, E., & Mendoza, A. (2017). Unravelling the composition of soil belowground microbial community before sowing transgenic cotton. Plant, Soil and Environment, 63, 512-518.spa
dcterms.referencesWang, W., Hao, W., Bian, Z., Lei, S., Wang, X., Sang, S., & Xu, S. (2014a). Effect of coal mining activities on the environment of Tetraena mongolica in Wuhai , Inner Mongolia , China-A geochemical perspective. International Journal of Coal Geology, 132, 94-102.spa
dcterms.referencesWang, D., Fonte, S., Parikh, S., Six, J., Scow, K. (2017). Biochar additions can enhance soil structure and the physical stabilization of C in aggregates. Geoderma, 303, 110-117spa
dcterms.referencesWhiteley, A., Jenkins, S., Waite, I., Kresoje, N., Payne, H., Mullan, B., Allcock, R., & O’Donnell, A. (2012). Microbial 16S rRNA Ion Tag and Community Metagenome Sequencing Using the Ion Torrent (PGM) Platform. Journal of Microbiological Methods, 91, 80-88spa
dcterms.referencesXiao, W., Hu, Z., & Fu, Y. (2014). Zoning of land reclamation in coal mining area and new progresses for the past 10 years. International Journal of Coal Science & Technology, 1(2), 177-183.spa
dcterms.referencesXu, N., Tan, G., Wang, H., & Gai, X. (2016). Effect of Biochar Additions to Soil on Nitrogen Leaching, Microbial Biomass and Bacterial Community Structure. European Journal of Soil Biology, 74, 1-8spa
dcterms.referencesYao, Q., Liu, J., Yu, Z., Li, Y., Jin, J., Liu, X., & Wang, G. (2017). Changes of Bacterial Community Compositions after Three Years of Biochar Application in a Black Soil of Northeast China. Applied Soil Ecology, 113, 11-21spa
dcterms.referencesZhang, K., Dang, H., Tan, S., Wang, Z., & Zhang, Q. (2010). Vegetation community and soil characteristics of abandoned agricultural land and pine plantation in the Qinling Mountains, China. Forest Ecology and Management, 259(10), 2036-2047spa
dcterms.referencesZhang, X., Wu, X., Zhang, S., Xing, Y., Wang, R., & Liang, W. (2014). Organic amendment effects on aggregate-associated organic C, microbial biomass C and glomalin in agricultural soils. Catena, 123, 188-194spa
dcterms.referencesZheng, J., Chen, J., Pan, G., Liu, X., Zhang, X., Li, J., Bian, R., Cheng, K., & Zheng, J. (2016). Biochar decreased microbial metabolic quotient and shifted community composition four years after a single incorporation in a slightly acid rice paddy from southwest China. Science of the Total Environment, 571, 206-217spa
dc.description.edition1a ed.spa
dc.relation.citationendpage56 p.spa
dc.relation.citationstartpage7 p.spa
dc.relation.ispartofbookGestión del riesgo y medio ambientespa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.subject.proposalBiocharspa
dc.subject.proposalPropiedades fisicoquímicas del suelospa
dc.subject.proposalComunidades bacterianas de la rizósferaspa
dc.subject.proposalRehabilitaciónspa
dc.subject.unescoSalud
dc.subject.unescoOrganización y gestión
dc.subject.unescoCiencia
dc.type.coarhttp://purl.org/coar/resource_type/c_3248spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/bookPartspa
dc.type.redcolhttps://purl.org/redcol/resource_type/CAP_LIBspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem