Publicación:
Identification of individualization techniques for criminal records in sanction lists

dc.contributor.authorArias Jaramillo, Gonzalo Mauricio
dc.contributor.authorPeláez, Pablo A.
dc.contributor.authorHoyos Velasco, Fredy Edimer
dc.date.accessioned2023-04-17T19:39:00Z
dc.date.available2023-04-17T19:39:00Z
dc.date.issued2019
dc.description.abstractUsing efficient searching techniques on sanctions lists and press articles allows a better filtering on individuals and entities to establish a commercial relationship with, including those who are going to have access to confidential information belonging to the company, in order to minimize the risk of leakage or information mismanagement. That process of filtering on individuals or entities could be automated by using individualization algorithms, searching techniques based on string comparisons, artificial intelligence, and facial recognition. Diverse methods were examined to be applied on each mentioned technique in order to identify which ones are ideal to its application on individualization due to their characteristics, in order to obtain agile and reliable results; taking into account that different methods are complementary and not exclusive, and that their combination allows to minimize human interaction in the classification of information, avoiding analysis of irrelevant data for that particular search. Keywords: Criminal records second False positives Filters Sanctions list Verification methods
dc.format.extent6 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.eissn2088-8708spa
dc.identifier.urihttps://dspace.tdea.edu.co/handle/tdea/2792
dc.language.isoengspa
dc.publisherInstitute of Advanced Engineering and Science (IAES)spa
dc.publisher.placeIndonesiaspa
dc.relation.citationendpage3803spa
dc.relation.citationissue5spa
dc.relation.citationstartpage3798spa
dc.relation.citationvolume9spa
dc.relation.ispartofjournalInternational Journal of Electrical and Computer Engineeringspa
dc.relation.referencesA F. Z. Salmam, A. Madani, and M. Kissi, “Emotion recognition from facial expression based on fiducial points detection and using Neural Network,” Int. J. Electr. Comput. Eng., vol. 8, no. 1, p. 52, Feb. 2018.spa
dc.relation.referencesB L. Deshpande and M. N. Rao, “Concept Drift Identification using Classifier Ensemble Approach,” Int. J. Electr. Comput. Eng., vol. 8, no. 1, p. 19, Feb. 2018spa
dc.relation.referencesC A. L. H. P.S and U. Eranna, “An Efficient Activity Detection System based on Skeleton Joints Identification,” Int. J. Electr. Comput. Eng., vol. 8, no. 6, p. 4995, Dec. 2018spa
dc.relation.referencesV. Balajichandrasekhar M., T. S. Rao, and G. Srinivas, “An Improvised Methodology to Unbar Android Mobile Phone for Forensic Examination,” Int. J. Electr. Comput. Eng., vol. 8, no. 4, p. 2239, Aug. 2018.spa
dc.relation.referencesPandey, S. K., Dubey, N. K., & Sharma, S, “A Study on String Matching Methodologies,” 5(3), 4732-4735, 2014.spa
dc.relation.referencesJoshi, C., Jaiswal, T., & Gaur, H, “An Overview Study of Personalized Web Search,” 3(1), 1-3, 2013.spa
dc.relation.referencesSalmela, L., & Tarhio, J., “Algorithms for Weighted Matching,” Work, 276-286, 2007.spa
dc.relation.referencesHapfelmeier, A., Mertes, C., Schmidt, J., & Kramer, S, “Towards Real-Time Machine Learning,” Department of Computer Science, Technische Universität München, 85748 Garching, Germany, 2012.spa
dc.relation.referencesHernández, R., “Estudio de técnicas de reconocimiento facial,” 86. Recuperado de http://teocom.googlecode.com/svn-history/r39/trunk/docs/papers/PFC_RogerGimeno.pdf, 2010spa
dc.relation.referencesGou, M, “Algorithms for String matching,” 1-8, 2014.spa
dc.relation.referencesGuerrero Enamorado, A., & Ceballos Gastell, D, “Una evaluación del algoritmo LVQ en una colección de texto,” Revista Cubana de Ciencias Informáticas, 10(4), 154-170, 2016.spa
dc.relation.referencesGarcía, C., & Gómez, I, “Algoritmos de aprendizaje: knn & kmeans,” Universidad Carlos III de Madrid, 1-8. Retrieved from http://www.it.uc3m.es/jvillena/irc/practicas/08-09/06.pdf, 2006.spa
dc.relation.referencesBetancour, G, “Las máquinas de soporte vectorial (SVMs),” Scientia Et Technica, (27), 67-72. https://doi.org/10.22517/23447214.6895, 2005.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.licenseAtribución-CompartirIgual 4.0 Internacional (CC BY-SA 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-sa/4.0/spa
dc.sourcehttps://ijece.iaescore.com/index.php/IJECE/article/view/17507/12977spa
dc.subject.decsFilters
dc.subject.decsFiltros
dc.subject.decsArtificial Intelligence
dc.subject.decsInteligencia Artificial
dc.subject.decsInteligência Artificial
dc.subject.decsFacial Recognition
dc.subject.decsReconhecimento Facial
dc.subject.decsReconocimiento Facial
dc.subject.decsAutomated Facial Recognition
dc.subject.decsReconocimiento Facial Automatizado
dc.subject.decsReconhecimento Facial Automatizado
dc.subject.proposalCriminal records second
dc.subject.proposalFalse positives
dc.subject.proposalSanctions list
dc.subject.proposalVerification methods
dc.titleIdentification of individualization techniques for criminal records in sanction lists
dc.typeArtículo de revistaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dspace.entity.typePublication

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Identification of individualization techniques for criminal records in sanction lists.pdf
Tamaño:
329.2 KB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
14.48 KB
Formato:
Item-specific license agreed upon to submission
Descripción: