
Capítulo III, pp. 59 de 228, ISBN 978-958-8628-65-3

59Investigación e Innovación en Ingeniería de Software - Volumen 4

I. INTRODUCTION

The system analyst is responsible—
in the early requirements elicitation
process—for identifying the problems
to be solved with a software application.
Such identification is based on: (i) the
analyst experience and knowledge
about the domain area; and (ii) the
stakeholder support. Problems are
collected by the system analyst during
the domain analysis for using them
as the main input of the requirements
specification. Such specification is
consistent with the problems identified
and the stakeholder needs.

The system analyst detects and
describes problems from the domain
discourse recognition and eventually
presents them in a formal way by
using a representation diagram.
Some methods of the software

development process, goal-oriented
software engineering (GORE) [1],
and organizational analysis have
diagrams for representing problems.
For instance, UNC-Method [2]
includes the cause-and-effect diagram
for specifying problems and relating
them to the system and the stakeholder
goals; logical framework [3] has
objective trees and problem trees for
linking goals and problems during the
project formulation and the decision-
making process; Business Modeling
with UML [4] has a goal schema for
graphically linking goals and problems;
NFR Framework [5] has problem
frameworks for specifying problems
in the non-functional requirements
elicitation process.System analysts
specify the problems in diagrams as
textual descriptions, based on their
experience and knowledge. However,

Capítulo 3
Formalization of domain problems
described in the cause-and-effect

diagram in the context of the software
development process

Fabio Alberto Vargas Agudelo - Fvargas@tdea.edu.co
Tecnológico de Antioquia

Carlos Mario Zapata Jaramillo - Cmzapata@unal.edu.co
Universidad Nacional de Colombia, Medellín

Capítulo III, pp. 60 de 228, ISBN 978-958-8628-65-3

60 Investigación e Innovación en Ingeniería de Software - Volumen 4

no formal process is driven for
guaranteeing the problems described
are actual problems, and such
problems are clearly understood by
the stakeholders. The aforementioned
facts lead to some gaps still remaining
in the early software requirements
elicitation process: relation among
early and late requirements is poor
[6]; requirements and business goal
are commonly unrelated to each
other [7]; information systems use
to misrepresent the requirements
captured from the business model [8];
functionality expected from business
processes is unrelated to the software
system functionality [7]; traceability
among expectations, needs, and their
representation in a goal diagram is poor
[9]; business goals are misused for
assuring the requirements specification
completeness and sufficiency [10]
[11]; an initial company model is
insufficient for getting relevant
information based on the context of
the company [6]; problems are poorly
described, making difficult to link and
trace them [12]; problems identified
during requirements elicitation are
described in a positive way [12]; no
formal methods are established for goal
and problem definition [13]; problem
definition is a hand-made process,
since analysts commonly draw up goal
and problem diagrams in a subjective
way [14]; analyst experience and
stakeholder knowledge are useful for
determining goals, but no validation

against problems is included in such a
process [15].

In this chapter, we propose a method
to formalize the problems of the
cause-and-effect diagram drawn up
by the analyst in the domain context
where the software application will be
used. We define a set of syntactic rules
for specifying problems, and we allow
analysts and stakeholdersto understand
the problems better. Improved
traceability and consistency related to
the business goals, the system goals,
and the requirements can be achieved
by using the formalized problem
schemas.

This chapteris organized as follows:
in Section II, we present the theoretical
framework with some definitions;
in Section III, we present some
methods for specifying problems in
the requirements elicitation process
and the organizational analysis; in
Section VI, we propose a method
to formalize the problems of the
cause-and-effect diagram during the
software development process; in
Section V, we provide an example for
applying our proposal into a lab study;
finally, in Section VI, we discuss some
conclusions and future work.

II. THE ORETICAL FRAME-
WORK

Goal-Oriented Requirement
Engineering (GORE) is an approach
for promoting the use of goals as the

Capítulo III, pp. 61 de 228, ISBN 978-958-8628-65-3

61Investigación e Innovación en Ingeniería de Software - Volumen 4

basis of the software requirements
elicitation. GORE includes a point
of view related to the purpose of
the system—intentional in nature.
The introduction of an intentional
point of view allows stakeholders
to expresstheir needsmore naturally,
focusing on what they want—their
goals—versus the way to achieve
them—conventional requirements.
Requirements can be derived from
goals [16]. Some approaches to GORE
differ in two main factors: the focused
requirements engineering activity—
e.g., requirements elicitation,
modeling, and analysis—and the
supported degree of formalism. For
example, KAOS [17] is focused
on formal requirements modeling.
NFR Framework [5] is also focused
on modeling but targeted on non-
functional requirements with a less
formal approach. I* is a methodology
based on the NFR Framework [18]
focused on the initial phases of the
requirements elicitation—particularly,
the business modeling. GBRAM [19]
is intended to integrate scenarios into
the context of goal modeling.

Cause-and-effect diagram is
used by organizations during the
requirements elicitation process in
order to think about the actual causes
of the potential problems and then to

establish corrective actions. In this
context, the cause-and-effect diagram
can be used to guide the analysis
and reflection about the problem
understanding, the identification of
root causes and possible solutions, and
the decision- making process.

Problems are specific issues
requiring a solution in a specific
domain. Perales [20] defines a
problem as any planned/spontaneous
situation producing, on the one hand,
a certain degree of uncertainty and, on
the other, a behavior aimed at finding
a solution.

Formalization is a set of rules,
expressions, and meanings intended
to characterize a language, allowing
for a step-by-step interpretation of a
particular process [21].

Pre-conceptual schema is a
conceptual-graph-like knowledge
representation for requirements
elicitation (see the main elements
in Fig. 1). Such a representation can
be obtained from controlled natural
language discourses, and it can be
then converted into standard UML
diagrams. Pre-conceptual schemas
are intermediate models for obtaining
UML diagrams from natural language
discourses [22].

Capítulo III, pp. 62 de 228, ISBN 978-958-8628-65-3

62 Investigación e Innovación en Ingeniería de Software - Volumen 4

III. BACKGROUND

The UNC-Method [2] includes—in
the software requirements elicitation
process—the cause-and-effect
diagram as a tool for identifying the
domain problems and their relation to
both organizational and system goals.
Such identification is hand-made by
the analyst and the stakeholder for
specifying problems and creating a
textual representation of the cause-
and-effect diagram. Traceability and
consistency among the organizational
goals and the functional requirements
of the software application are difficult
to achieve at this level.

Business Modeling with UML
[4] has a goal/problem diagram to
relate the organizational goals to the
problems identified in the domain.
Problems are intended to be obstacles
to the achievement of goals. Problem
specification is manually written
by using textual descriptions, and
relationships of problems and the
different actors involved in the process
are difficult to achieve. Also, syntactic
and semantic structures to formalize

the problems are underspecified.

In the NFR Framework [5], problems
are specified by using problem
frameworks in the non-functional
requirements elicitation process.
Informal representation of the problem
domain can lead to traceability and
consistency problems when reviewed
against the original goals.

Zapata, Acevedo, and Moreno [13]
make a representation of the semantic
relations among problems and goals
by using predicate logic. The authors
propose formal methods as a way to
plan goals and domain problems.

Lin and Zhi [15] establish I*
techniques for combining goal
analysis and problem analysis. They
argue goal decomposition requires
domain knowledge and, consequently,
problems can be used for generating
requirements. However, no structures
are used for specifying either goals or
problems.

Vargas [12] defines grammar rules
for specifying goals and problems,

Fig. 1. Syntax of the pre-conceptual schemas. Source [22]

Capítulo III, pp. 63 de 228, ISBN 978-958-8628-65-3

63Investigación e Innovación en Ingeniería de Software - Volumen 4

and he applies them to the cause-and-
effect diagram. He also establishes
an approximation to a consistency
relation based on such rules, but he
uses syntactic structures with explicit
common words among goals and
problems. This fact leads to some
drawbacks since words used to express
problems are different from those used
to express related goals.

In terms of organizational analysis,
Sanchez [3] argues the logical
framework method includes an
objective tree—future outcomes you
want to accomplish—and a problem
tree—what you want to solve. The
problem tree is generated from the
objective tree by using some rules.
Basically, problems are expressed
as negative states related to the
objectives. When the central objective
of the process is expressed in a
negative form, you can have the central
problem and so on. Even though the
rules are defined, the whole process
should be manually carried out by the
organizational analyst.

IV. RESULTS

During the early software
requirements elicitation, the
specification of the problems to be

solved by the software application
is crucial. The analyst and the
stakeholder are directly involved in
this task, and they complete it based
on their experience and organizational
knowledge. In some methods for
eliciting requirements, a diagram is
often used for drawing the problems.
The formal method we propose in this
section for expressing the problems in
the cause-and-effect diagram is based
on a set of syntactic and semantic
rules and pre-conceptual schemas
for graphically representing context
information. We use such rules and
schemas due to their proximity to the
natural language of the stakeholder and
the technical language of the analyst.
The steps of the formal method for
expressing problems in the cause-and-
effect diagram are the following:

Step 1. Recognizing the syntactic-
semantic structure for specifying
problems. In Fig. 2 we propose a
preconceptual-schema-based structure
for problems. An organizational
analyst should be familiarized with
this structure after the first step.

Capítulo III, pp. 64 de 228, ISBN 978-958-8628-65-3

64 Investigación e Innovación en Ingeniería de Software - Volumen 4

Fig. 2. Problem structure based on pre-conceptual schemas. Source: the authors

Step 2. Using a set of syntactic-
semantic rules for formalizing
problems. We define three rules to
be formally used for specifying the
problems described in the cause-and-
effect diagram; we allow the analyst
to specify problems in a clear and
easy way to be understood by the
stakeholders. By using the rules,
relationships among problems, and
organizational and system goals
are guaranteed by traceability and
consistency. In the rules, the syntactic
structures of the problems are adapted
from Vargas [12], while the graphical
schemas are proposed in this paper.
We introduce the red slash as a new
symbol for denoting the negation
of an element of the pre-conceptual
schemas. Red slash is supposed to
be put over the element we want to
negate. The abbreviations used in

the rules are: S=Sentence, V=Verb,
Ad=Adjective, NP= Noun Phrase,
Adv=Adverb, N=Noun.

Rule No. 1. Enunciating the
problem by using a negative
connotation adverb. The structures
are shown in Tables 1 and 2.

Rule No. 2. Enunciating the
problem by using a negative
connotation adjective. The structures
are shown in Table 3.

Rule No. 3. Enunciating the
problem by using a negative
connotation noun. The structures are
shown in Table 4.

V. LABORATORY EXAMPLE

Zapata and Arango [2] present a
cause-and-effect diagram related to
the selling process of a company (See
Fig. 3).

Capítulo III, pp. 65 de 228, ISBN 978-958-8628-65-3

65Investigación e Innovación en Ingeniería de Software - Volumen 4

Table 1. Negative-connotation adverb type 1. Source: the authors

Description Restrictions Example

S=NP1+Adv1+Ad-
v2+V+NP2

Adv1=Not; V = Action
verb;

Adv2 = positive connota-
tion adverb

The laboratory technician
does not efficiently deliver

samples

Graphical schema for formalizing problems

S=NP1+Adv+V+NP2
Adv = negative connota-

tion

The Teacher inadequately
delivers the grade mark

report
Graphical schema for formalizing problems

Capítulo III, pp. 66 de 228, ISBN 978-958-8628-65-3

66 Investigación e Innovación en Ingeniería de Software - Volumen 4

Table 2. N egative-connotation adverb type 2. Source: the authors

Description Restrictions Example
S=NP1+Ad-
v+V+NP2

Adv1=Not; V
= action verb

The dispatcher does not
send the ambulance service

Graphical schema for formalizing problems

S=NP1+Ad-
v+V+NP2

Adv = not; V=
verb to have

The provider does not have availability

Graphical schema for formalizing problems

Table 3. Negative-connotation adjective type 1. Source: the authors

Description Restrictions Example

S=NP+V+Ad Ad= negative
connotation The Ambulance service is poor

Graphical schema for formalizing problems

Capítulo III, pp. 67 de 228, ISBN 978-958-8628-65-3

67Investigación e Innovación en Ingeniería de Software - Volumen 4

Description Restrictions Example

S=NP+V+Adv+Ad

Ad = positive
connotation
Adv = Not

V= verb to be

The Stock product is not available

Graphical schema for formalizing problems

S=NP+V1+Adv+V2

V1= verb to
be

Adv = not
V2= achieve-

ment verb

The product demand is not met

Graphical schema for formalizing problems

Capítulo III, pp. 68 de 228, ISBN 978-958-8628-65-3

68 Investigación e Innovación en Ingeniería de Software - Volumen 4

Table 4. Negative-connotation noun type 1. Source: the authors

Description Restrictions Example

S=NP1+V+NP2 NP2= negative
connotation

Document management has de-
lays

Graphical schema for formalizing problems

S=N-
P1+V+NP2

NP2 = positive connotation; V= verb to have in
negative form

The Project has
no papers

Graphical schema for formalizing problems

Fig. 3. Cause-and-effect diagram related to the selling
process of a company. Source [2]

Capítulo III, pp. 69 de 228, ISBN 978-958-8628-65-3

69Investigación e Innovación en Ingeniería de Software - Volumen 4

Problems described in the diagram
(see Fig. 3.) are ambiguously
generated since both their structure
and specification are unclear. In Table
5, we summarize some of the detected
ambiguities.

According to our proposed method,
we need to re-write and formalize each
problem by using the rules defined in
this paper. In Table 6, we present the
problems formalized. The modified
cause-and-effect diagram is presented
in Fig. 4.

Table 5. Ambiguities detected in the cause-and-effect
diagram. Source: the authors

Problems Ambiguity detected
Stock is not available to
meet the demand

The problem specification does not refer to a single
problem, but rather many problems can be deduced.

The selling process is often
delayed in the company

The problem specifi
cation is clear, but the syntactic structure of the problem
can be improved

The dispatches are taking
more time than they are ex-
pected to

The speci
fication is not conducive to the clear statement of the
problem since the sentence does not contain a negative
connotation

The process of reporting or-
ders is made by hand

The specifi
cation is not conducive to the clear statement of the
problem, since the sentence does not contain a negative
connotation.

There are often differences
between confi
rmed orders and products to
be dispatched.

The specifi
cation does not defi
ne the problem clearly. Again, no negative connotation
is detected.

VI. CONCLUSIONS AND FUTURE
WORK

Many of the problems detected
and further specified in software
development processes are exposed
in an unclear way, and in some cases,

they avoid the expression of a problem
by themselves. This fact implies
misinterpretations made by analysts
and stakeholders, causing reprocesses
and irrelevant software requirements
discovery to an organization.

Capítulo III, pp. 70 de 228, ISBN 978-958-8628-65-3

70 Investigación e Innovación en Ingeniería de Software - Volumen 4

Table 6. Problems formalized. Source: the authors

Problems Problems formalized
Stock is not available to meet the demand The Stock product is not available (Rule

No 2)

The Product demand is not met (Rule
nro2)

The process of reporting orders is made by
hand

The reporting order has delays (Rule No 3)

There are often differences between confi
rmed orders and products to be dispatched

The Stock has no products (Rule No 3)

The selling process is often delayed in the
company.

The company selling process has delays
(Rule No 3)

Capítulo III, pp. 71 de 228, ISBN 978-958-8628-65-3

71Investigación e Innovación en Ingeniería de Software - Volumen 4

The dispatches are taking more time than
they are expected to do.

The company carries out the dispatches
late (Rule No 1)

Fig. 4. Final cause-and-effect diagram. Source: the authors

The formalization of the problems
allows for generating traceability and
consistency during the initial software
requirements elicitation, leading to
a less ambiguous representation of
problems, so thestakeholders and
analysts can understand the problems
more easily .

In this chapter we proposed
structures for formalizing problems
in order to support system analysts
in the early software requirements
elicitation process. We expect to
generate a higher degree of reliability
in the software solutions raised. In

fact, problems should be aligned to
the organizational context, and they
should be relevant for understanding
the stakeholder needs.

As future work, we propose the
extension to the ruleset used for
formalizing problems as a way to
generate traceability with different
actors in processes of organizational
and requirements analysis. We also
propose the automation of the process
with the generation of ontologies and
syntactic and semantic relationships
with the organization goals for
validating the problems detected.

Capítulo III, pp. 72 de 228, ISBN 978-958-8628-65-3

72 Investigación e Innovación en Ingeniería de Software - Volumen 4

VII. REFERENCES

[1] P. P. Negri, V. E. S. Souza, A. L.
de Castro Leal, R. de Almeida
Falbo, G. Guizzardi. “Towards
an Ontology of Goal-Oriented
Requirements”. In CIbSE. 2017.
pp. 469-482.

[2] C. M. Zapata, F. Arango. “The
UNC-Method: a problem based
software development method”.
Ingeniería e Investigación. Vol.
29(1). 2009. pp. 69-75.

[3] N. Sánchez. “El marco lógico.
Metodología para la planificación,
seguimiento, y evaluación de
proyectos”. Revista Visión
Gerencial. Vol. 6(2). 2006. pp.
328-343.

[4] H. Eriksson, M. Penker. “Business
modeling with UML: Business
patterns at work”. OMG Press,
2000.

[5] M. Marinho, D. Arruda, F.
Wanderley, & A. Lins. “A
systematic approach of dataset
definition for a supervised
machine learning using NFR
framework”. In 2018 11th
International Conference on
the Quality of Information and
Communications Technology
(QUATIC). 2018. pp. 110-118.

[6] A. Martínez, O. Pastor, J.
Mylopoulos, P. Giorgini. “From
Early Requirements to Late

Requirements: A goal-based
approach”. Eight International
Bi-Conference Workshop on
Agent-Oriented Information
System (AOIS). 2006. pp. 1-12.

[7] D. F. Mendonça, G. N.
Rodrigues, R. Ali, V. Alves
& L. Baresi. “GODA: A
goal-oriented requirements
engineering framework
for runtime dependability
analysis”. Information and
Software Technology. Vol. 80.
2016. Pp. 245-264.

 [8] H. Estrada, A. Martínez, O.
Pastor, J. Sánchez. “Generación
de especificaciones de requisitos
de software a partir de modelos
de negocios: un enfoque basado
en metas”. V Workshop de
engenharia de requisites. 2002.
pp. 179-193.

[9] J. Jureta, S. Faulkner, P-Y.
Schobbens. “Clear Justification
of Modeling Decisions for
Goal-Oriented Requirements
Engineering”. Requirements
Engineering. Vol. 13(2). 2008.
pp. 87-115.

[10] C. Banerjee, A. Banerjee & S. K.
Sharma. “Estimating influence of
threat using Misuse Case Oriented
Quality Requirements (MCOQR)
metrics: Security requirements
engineering perspective”.
International Journal of Hybrid

Capítulo III, pp. 73 de 228, ISBN 978-958-8628-65-3

73Investigación e Innovación en Ingeniería de Software - Volumen 4

Intelligent Systems. Vol. 14(1-2).
2017. pp. 1-11.

[11] U. Zafar, M. Bhuiyan, P. W. C.
Prasad & F. Haque. “Integration
of Use Case Models and
BPMN Using Goal-Oriented
Requirements Engineering”.
JCP. Vol. 13(2). 2018. Pp. 212-
221.

[12] F. Vargas. “Método para
establecer la consistencia de
los problemas en el diagrama
causa-efecto con el diagrama de
objetivos de KAOS”. Tesis de
maestría. Universidad Nacional
de Colombia. 2010.

[13] C. Zapata, J. Acevedo, D. Moreno.
“Representación de relaciones
semánticas entre problemas y
objetivos mediante lógica de
predicados”. Revista EIA. 2011.
Vol. 8(15). pp. 61-72.

[14] C. Zapata, L. Lezcano.
“Caracterización de los verbos
usados en el diagrama de
objetivos”. Dyna. Vol. 76(158).
2009. pp. 219-228.

[15] C. Menghi, P. Spoletini & C. Ghezzi.
“Integrating goal model
analysis with iterative design”.
In International Working
Conference on Requirements
Engineering: Foundation for
Software Quality. pp. 112-128.
2018.

[16] L. Olsina & P. Becker. “Linking
Business and Information Need
Goals with Functional and Non-
functional Requirements”. In
CIbSE. 2018. pp. 381-394.

[17] A. Dardenne, V. Van
Lamsweerde, S. Fickas.
“Goal-directed requirements
acquisition”. Science of computer
programming. Vol. 20(1). 1993.
pp. 3-50.

[18] E. Yu. “Modelling Strategic
Relationships for Process
Reengineering”. Ph.D. Thesis.
University of Toronto. 1995.

[19] A. I. Antón, C. Potts. “The use of
goals to surface requirements for
evolving systems”. 20th IEEE
International Conference on
Software Engineering. 1998. pp.
157-166.

[20] F. Vargas Agudelo. “Modelo para
la especificación de requisitos
iniciales de software a partir de
la relación sintáctica y semántica
entre objetivos y problemas”.
Tesis de doctorado. Universidad
Nacional de Colombia. 2016.

[21] Y. Sermet & I. Demir. “Towards an
information centric flood ontology
for information management and
communication”. Earth Science
Informatics”. Vol. 12(4). 2019.
Pp. 541-551.

Capítulo III, pp. 74 de 228, ISBN 978-958-8628-65-3

74 Investigación e Innovación en Ingeniería de Software - Volumen 4

[22] C. M. Zapata, A. Gelbukh, F.
A. Arango. “Pre-conceptual
schema: A conceptual-graph-
like knowledge representation
for requirements elicitation”.
5th Mexican International
Conference on Artificial
Intelligence. 2006. pp. 27-37.

[23] B. Manrique-Losada, C.
M. Zapata-Jaramillo & D.
A. Burgos. “Re-expressing
business processes information
from corporate documents
into controlled language”.
In International Conference
on Applications of Natural
Language to Information
Systems. 2016. pp. 376-383.

