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Abstract 

 
The hydrodynamic shape of a blade is one of the most 
important factors in the design process of a horizontal axis 
hydrokinetic turbine that influences its performance. The 
present work is focused on the design and hydrodynamic 
analysis of a high-lift system using the optimization method of 
surrogate models and computational fluid dynamics (CFD) 
analysis.  
 
The parameters that affect the amount of the lift and the drag 

force that a hydrofoil can generate are the gap, the overlap, the 
flap deflection angle (δ), the flap chord length (C2) and the 
angle of attack of the hydrofoil (α). These factors were varied to 
examine the turbine performance in terms of the ratio between 
the lift (CL) and the drag coefficient (CD), and the minimum 
negative pressure coefficient (min Cpre) in order to avoid the 
cavitation inception. For this propose, surrogate models were 
implemented to analyse the CFD results and find the optimal 

combination of the design parameters of the high-lift hydrofoil. 
The traditional Eppler 420 hydrofoil was utilized for the design 
of the multi-element profile, which was composed of a main 
element and a flap. The multi-element design selected as 
optimal had a gap of 2.825 %C1, an overlap of 8.52 %C1, a δ of 
19.765˚, a C2 of 42.471 %C1 and a α of -4˚, where C1 refers to 
the chord length of the main element. In comparison with the 
traditional Eppler 420 hydrofoil, CL/CD ratio increases from 

39.050 to 42.517. 
 

Key words. Horizontal axis hydrokinetic turbine, surrogate 

model, computational fluid dynamics, high-lift system, multi-
element hydrofoil 
 

1. Introduction 
 

A main objective of hydrokinetic turbine designers is to 

maximize the performance and reduce manufacture costs 

[1-2]. One possible way to reach the objective of 

maximizing the power coefficient (Cp) is to design high-
lift systems consisting of a hydrofoil with a flap [3-4]. 

This geometrical configuration results in the 

maximization of the lift and the minimization of the flow 

separation around the hydrofoil [4]. Commonly, flow 

separation leads to a loss of the lift, an increase of the 

drag and, therefore, a reduction of the blade performance 

[3-5].  

High-lift systems typically require a lot of time to be 
designed and tested. However, the most recent advances 

in computational fluid dynamics (CFD) have become in 

an invaluable tool for hydrodynamic optimization design 

[6]. In the process of the design optimization, the number 

of the objective function evaluations using high-fidelity 

CFD analysis solvers is severely limited by time and cost 

[8]. One alternative is to construct a simple approximate 

model of the complicated CFD analysis solver [8]. The 

approximate model expresses the relationship between 

the objective function (output) and the design variables 

(input) with a simple equation. It is important to note that 
this model requires very little time to evaluate the 

objective(s) function(s) [8] compared to CFD analysis. In 

consequence, it allows saving a lot of computational time 

and exploring a wider design space. Additionally, 

surrogate models (SM) are used for representing non-

linearity of hydrodynamic problems [9]. Therefore, SM, 

also so-called low fidelity models, are becoming popular 

[10-11].  

 

SM are successfully used by various researches to 

optimize wind turbine performance [11-12]. These 

authors reported that SM are very efficient in comparison 
with the conventional optimization methods [11-12]. 

However, the optimization of multi-element hydrofoils 

for hydrokinetic turbines using SM has not been 

employed in the literature. In this study, the application 

of SM is extended to optimize the performance of a 

multi-element hydrofoil for a horizontal axis hydrokinetic 

turbine. The details of the mathematical model utilized, 

meshing schemes employed and the computational 

analyses conducted are described.  

 

This research uses Ansys Fluent software, as the high 
fidelity hydrodynamic characteristic evaluator of multi-

element hydrofoil. In the software, the objective 

functions, consisting of the maximization of the lift 

coefficient (CL) and the minimization of the drag 

coefficient (CD) of the hydrofoil are evaluated for several 

initial design parameter combination. From the CFD 

results and using an iterative procedure, several SM, 

based on Kriging method, were generated. In each stage 

and using a genetic algorithm optimizer, new design 
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points are suggested from the previous created models 

until the optimal design parameter configuration is found.  

 

2. Optimization methodology 

 

In general, the objective of the hydrodynamic shape 

optimization, for a given operating condition, is to design 

a hydrofoil that maximizes CL, or minimizes CD, or 

maximizes the lift-to-drag ratio (CL/CD); which is 

subjected to several constraints, such as the minimum 

negative pressure coefficient (min Cpre) for avoiding the 

cavitation inception, as well as geometrical constraints, 

among others [1, 3-5, 13-14].  

 

2.1 Cavitation criteria  
 

Cavitation is an undesirable phenomenon that should be 

considered on the hydrokinetic turbine design. It causes 

noise, vibration, damage to the turbine components in 

special the blades, reduces its performance and life. It 

phenomenon is usually originated in the blade section 

where the pressure decreases below the vapour pressure 
of the fluid. The liquid vaporizes instantly, forming a 

cavity of vapour, which alters the flow [14-15]. 

 

The size and shape of the cavity of vapour or vapour 

bubble also vary due to the pressure and velocity fields. 

When the vapour cavity collapse suddenly, the pressure 

on the blade surface increases, promoting erosion on the 

surface of blade [13-15].  

 

The failures generated by the cavitation decrease the lift 

and increase the drag [13-15], leading to a reduction of 

the turbine efficiency. It can be predicted by comparing 
the local pressure distribution or the local minimum 

pressure coefficient (𝑪𝒑𝒓𝒆) with the cavitation number 

(𝝈), which is defined in Eq. (1). 
 

 𝛔 =
𝑷𝟎−𝑷𝑽

𝟎.𝟓𝝆𝑽𝒓𝒆𝒍
𝟐 =

𝑷𝑨𝑻+𝝆𝒈𝒉−𝑷𝑽

𝟎.𝟓𝝆𝑽𝒓𝒆𝒍
𝟐  (1) 

 

where Po, is the reference static pressure, 𝑷𝑨𝑻 refers to 

the atmospheric pressure, 𝝆 is the water density, 𝒈 is the 

gravity, h is the distance between the water free surface 

and the centre on the hydrokinetic rotor, 𝑷𝑽 refers to the 

vapour pressure at the flow temperature, and 𝑽𝒓𝒆𝒍 is the 

relative velocity on a blade section. The min Cpre is an 

important parameter at the hydrokinetic turbine design. It 

gives information on the hydrodynamic loading of the 

blade and is defined as the minimum value of the 

pressure coefficient on the suction side of the blade 
section [14-15]. 

 

There will be cavitation on the blade section if the local 

minimum pressure coefficient, 𝒎𝒊𝒏 𝑪𝒑𝒓𝒆 is lower than 𝛔; 

therefore, the criterion to avoid cavitation is given by Eq. 

(2) [14]. 

𝛔 + 𝐦𝐢𝐧 𝑪𝒑𝒓𝒆 ≥ 𝟎 (2) 

 

The pressure coefficient is classically defined as 

represented by Eq. (3). 

 

𝐂𝐩𝐫𝐞 =
𝐏𝐋 − 𝐏𝐨

𝟎. 𝟓𝛒𝐕𝐫𝐞𝐥
𝟐  

(3) 

where PL is the local pressure.  

 

2.2 Objective functions  
 

In this study, the objective functions were related to the 

maximization of the CL and the minimization of CD of the 

multi-element hydrofoil, as illustrated in Figure 1. 

Particularly, the optimization problem was formulated as 

defined in Eq. (4), which was subjected to the restriction 

described in Eq. (5). 

 

𝐦𝐚𝐱 𝑪𝑳 or −𝐦𝐢𝐧 𝑪𝑳 

𝐦𝐢𝐧 𝑪𝑫 

(4) 

 

|𝑚𝑖𝑛 𝐶𝑝𝑟𝑒| ≤ 4 

 

(5) 

where 𝒎𝒊𝒏 𝑪𝒑𝒓𝒆 refers to the minimum negative pressure 

coefficient to avoid the cavitation inception.  

The design parameters are listed in Table 1. 

 

 

Fig. 1. Geometry parametrization of the multi-element hydrofoil.  
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Table 1. Multi-element hydrofoil parameter design values.  

Parameter (units) Values 

C (m) 0.1773 

𝑽𝒓𝒆𝒍 = 𝑼∞ (m/s) 5.517  

𝜶 (°) −10° ≤  𝛼 ≤ 10° 

𝜹 (°) 𝟏𝟎° ≤   𝜹 ≤ 𝟑𝟎 

𝒈𝒂𝒑 (°) 𝟏%𝑪𝟏 ≤ 𝒈𝒂𝒑 ≤ 𝟓%𝑪𝟏 

𝒐𝒗𝒍 (m) −5%𝐶1 ≤ 𝑜𝑣𝑙 ≤ 20%𝐶1 

𝑪𝟐 (m) 𝟑𝟎%𝑪𝟏 ≤ 𝑪𝟐 ≤ 𝟕𝟓%𝑪𝟏 

 
where CL, CD, and α correspond to the lift coefficient, the 

drag coefficient, and the angle of attack, respectively. The 

position (gap, overlap) and inclination (𝛿) of the flap 

respect to main hydrofoil are the design parameters. 

Overlap (ovl) is the flap leading-edge position on the x-

axis and gap is the flap leading-edge position on the y-

axis. In turn, C, which is equal to 0.1773 m in this study, 

C1 and C2, are the chord length of the blade, the length of 

the main element and length of flap, respectively [3-5]. It 

is noteworthy that changing the values of the gap and the 
overlap slightly resulted in a significantly different 

hydrodynamic performance for the multi-element 

hydrofoil.  

 

The design variable vector can be written as descried by 

Eq. (6). 

 

 𝑋 = [𝛼, 𝛿, 𝑔𝑎𝑝, 𝑜𝑣𝑙, 𝐶2  ]𝑇 (6) 

The size of the chord length and the operating condition, 

which stands for the speed (𝑉𝑟𝑒𝑣) were fixed during the 

optimization procedure.  

 

The optimization problem can be mathematically 

expressed as represented by Eq. (7). 

 

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑋), (𝑓: Ω ⊆  ℛ𝑛𝑥 ⟶ ℜ (7) 

 

where nx is the number of decision variables. It is 
highlighted that an optimization algorithm is focused on 

finding the optimal solution (𝑋∗) that minimizes𝑓(𝑋∗); 

i.e., 𝑓(𝑋∗) < 𝑓(𝑋), ∀ 𝑋 ∈ Ω, where Ω denotes the search 

domain.  

 

2.3 Surrogate-based optimization 
 

A surrogate-based optimization procedure is an approach 

where direct optimization of the expensive high-fidelity 
simulation model is replaced by iterative updating and re-

optimization of its computationally cheap representation; 

i.e., the surrogate. A SM is basically a mathematical 

model, which is considered a statistical response surface 

model of a simulation model [16-17].  

 

There are several function approximation modelling 

techniques, where the SM is created by approximating 

sampled high-fidelity model data. The most commonly 

used methods to solve engineering problems include radial 

basis function interpolation, polynomial approximation, 
response surface methodology, weighted average 

surrogate, support vector regression, kriging, and neural 

networks [17-18].  

SM provides a vector of prediction outputs (𝑌) for a 

given vector of prediction inputs (𝑋 ∈ 𝑅𝑛𝑥), where nx is 

the number of dimensions or the number of decision 

variables, and can be expressed as Eq. (8).  

 

 𝑌 = 𝑓(𝑋, 𝑋𝑡 , 𝑌𝑡) (8) 

where 𝑋𝑡 ∈ ℜ𝑛𝑥 and 𝑌𝑡  are the vectors of training inputs 

and outputs, respectively, which are used to build the SM 

a priori. In turn, 𝑋 is the unknown point to be predicted 

by using the SM [17-18].  

 

In the current work, Kriging-based genetic algorithm was 

used to approximate the functions based on various 

sample points. The SM is called low fidelity model, 

which is a reduced-accuracy but a fast representation of 
the system of interest. This can be obtained from several 

ways, such as by using simplified-physics, leaving out 

certain second-order effects or describing the system on a 

different physical level [16-19]. 

 

Kriging model could also be defined as an interpolating 

SM used to approximate the high fidelity computer 

models in a given design space. It is a linear combination 

of a known polynomial function,𝑓(𝑋), and a local 

derivation, 𝑍(𝑋), which follows a distribution with 0 

mean and variance, expressed as 𝜎2. The model can be 

postulated as described in Eq. (9) [17-18]. 
 

 𝑌(𝑋) = 𝑓(𝑋) + 𝑍(𝑋) (9) 

where 𝑌(𝑋) represents the unknown function of interest. 

The covariance matrix of 𝑍(𝑋) is given by Eq. (10).  

 

𝑐𝑜𝑣[𝑍(𝑋(𝑖)), 𝑍(𝑋(𝑗))] = 𝜎2𝑅[𝑅(𝑋(𝑖), 𝑋(𝑗))]; 𝑖, 𝑗

= 1 … 𝑛𝑥 

(10) 

 

where R, nx and 𝑅(𝑋(𝑖), 𝑋(𝑗)) represent the symmetric 

correlation coefficient matrix of order (nx, nx) with 

normalized diagonal values, the number of samples and 

the spatial correlation function between the sample points 

𝑋(𝑖)and 𝑋(𝑗), respectively.  
 

Two types of correlation functions can be used for the 

SM: the exponential (Ornstein-Uhlenbeck process) and 

the Gaussian correlation function, given by Eq. (11) and 

(12), respectively. 

 

𝑅(𝑋(𝑖), 𝑋(𝑗)) = ∏ exp (−𝜃𝑙 |𝑋𝑙
(𝑖)

− 𝑋𝑙

(𝑗)
|)

𝑛𝑥

𝑙=1

 

(11) 

𝑅(𝑋(𝑖), 𝑋(𝑗)) = ∏ exp (−𝜃𝑙 (𝑋𝑙
(𝑖)

− 𝑋𝑙

(𝑗)
)

2

)

𝑛𝑥

𝑙=1

 

(12) 

 

where 𝜃𝑙 ∈ 𝑅+. The number of hyperparameters (𝜃) is 

equal to the number of variables (nx).  

 

To construct the Kriging model the software Matlab was 

used.  
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Figure 2 represents the optimization procedure used in this 

study. In general, the stages of surrogate-based modelling 

approach include an initial CFD study (defining of the 

geometry, the computational domain and the boundary 

conditions, and conducting a mesh dependency study 

before the achievement of the CFD results). The next stage 

consists of defining the objective functions and the 

variables involved in the optimization (goal setting). 

Subsequently, a sampling plan for the design points is 
defined; then, some numerical simulations at these design 

points are carried out for the construction of a new SM 

based on the simulations. Afterwards, by using a genetic 

algorithm, the optimal design points are found. If the 

optimal design points with the local maxima of the 

objective functions are not found in the design space, a 

new design space is generated, and the analysis is repeated 

in the new design space until the optimal design point with 

the local maximal is achieved [20]. 

 
Fig. 2. Optimization procedure 

 
When obtaining the optimal design points of the genetic 

algorithm, it is decided to evaluate in CFD the 3 points of 

the Pareto front with a better CL, CD, CL/CD ratio [4, 7]. 

Furthermore, for the point out of the three evaluated ones 

obtaining the best CL/CD ratio, additional studies are made 

by varying α in the integer values close to the selected 

point up to a maximum CL/CD of the geometry is found. 

Once the results of the CFD simulations of the new design 

points are obtained,  the data are added to the initial 

sampling to create a new mathematical model and an 

optimization cycle until the stop criterion is met [4, 8]. As 
a stop criterion, it was decided to evaluate the same 

number of new designs, including the initial sampling 

plan, which corresponds to an evaluation of 100 multi-

element hydrofoils for a total of 200 CFD simulations.  
 

2.4 Optimal design search algorithm  
 

Once the SM was constructed, a genetic algorithm was 

used to find the optimal design points [20]. For this 

propose, the function gamultiobj in Matlab was utilized, 

which was represented by Eq. (13). The function found 𝑋 

on the Pareto front of the objective functions defined by 

the variable “fun”. In turn, nvars was the dimension of 

the optimization problem (number of decision variables).  

 

𝑋 =  𝑔𝑎𝑚𝑢𝑙𝑡𝑖𝑜𝑏𝑗(𝑓𝑢𝑛, 𝑛𝑣𝑎𝑟𝑠) (13) 

 

2.5 Numerical analysis  
 

For the optimization procedure, a traditional hydrofoil 
Eppler 420 was selected due to previous studies carried 

out by the authors where its performance was 

demonstrated in comparison with other hydrodynamic 

profiles [3-5]. A computational domain was designed in 

order to know the performance parameters of this 

hydrofoil as a multi-element hydrofoil. A two 

dimensional CFD model was used to describe the flow 

behaviour around the hydrofoil. The flow was assumed 

two-dimensional, steady, incompressible and viscous. 

The Reynolds-averaged Navier-Stoke (RANS) equations 

were considered as the governing equation with the 𝒌 −
𝝎 SST turbulence model. Numerical fluid flow 

simulations were performed using the commercial 

computer code Ansys Fluent. The Cpre, CL and the CD 

were evaluated using the software.  

 

A computational grid for an Eppler 420 multi-element 

hydrofoil is represented in Figure 3. The unstructured 

grids used in this study have a C-topology with 

quadrilateral elements.  The computational domain 

stretches 10 chord lengths upstream (radius) and 20 chord 
lengths downstream. The mesh was built to ensure a y+≤1 

placing at least 30 layers in the region of the boundary 

layer. A study of the grid independence was conducted to 

ensure the solution convergence achieving a mesh of 

about 210000 elements. CL and CD were chosen as the 

parameters of interest for the mesh independence study. 

Grids for several design points were generated in a 

similar manner and the y+ value of the converged solution 

was maintained below 1. The boundary conditions are 

described in Table 12.  

 
Table 2. Geometric hydrofoil and boundary condition 

specifications  
 

Parameter Description 

Blade profile Eppler 420 

Blade chord length (C) 0.177 m 

Fluid Water at 25° C  

Turbulence model  𝒌 − 𝝎 SST 

Inlet  Velocity inlet 

Outlet Pressure outlet 

Upper boundaries (top edge) Symmetric boundary  

Lower boundaries (bottom edge) Symmetric boundary  

Hydrofoil No-slip wall 
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Fig. 3. a) A computational grid with a C-topology for a Eppler 

420 multi-element hydrofoil. b) A view of the computational grid 
close to the Eppler 420 multi-element hydrofoil. 

 

2 Results and discussion 
 

For the construction of the SM based on the initial 

simulations, a process of generating data point was 

required. The performance of SM strongly depends on the 

quality, as well as on the number of samples. For this 

study 100 high-fidelity CFD initial simulations were 
carried out.    

The initial points could be defined by a design of 

experiment (DoE) technique, which is an adaptive 

sampling strategy. On the other hand, stationary sampling 

strategies, such as Latin Hypercube Sampling (LHS), 

which are widely used, was utilized in the current research. 

LHS is a statistical method for generating a quasi-random 

sampling distribution [4]. Therefore, LHS was used with 

100 points that were optimized according to the Morris-

Mitchell criterion to ensure a uniform distribution of the 

sample points within the design space. 
 

Subsequently, the design parameters, the objective 

functions and design space were defined. The geometry of 

the multi-element hydrofoil and the CFD analysis were 

conducted. The CFD solver evaluated the objective 

function values of the designs parameters. From these 

simulations, the SM was created using the data points 

analysed by the CFD solver. The search algorithm found 

the optimal point from the SM constructed.  

 

Through the established SM, a Pareto front was 

constructed, as shown in Figure 4. In the figure, the results 
concerning the initial sampling, the design suggested by 

the SM, the starting design (Eppler 420 hydrofoil) and the 

selected multi-element design based on the CL/CD ratio are 

illustrated.  

 

Figure 4 show that few of the initial designs contributed 

to the Pareto front and some of them granted a better 

CL/CD ratio than that corresponding to the starting Eppler 

420 hydrofoil. Additionally, the designs supplied by the 

SM contributed to the Pareto front with new designs that 

fill the gaps in the Pareto front of the initial sampling 

plan and move it forward.  

 

 

Fig. 4. Pareto front.  

The initial and optimized multi-element hydrofoil shapes 

are represented in Figure 5. The resulting flow was more 

aligned with the flap compared to the traditional 

hydrofoil. The multi-element design selected as the 

optimal one had a gap of 2.825 %C1, an overlap of 8.52 
%C1, a δ of 19.765˚, a C2 of 42.471 %C1 and a α of -4˚. 

CL and CD were equal to 2.016 and 0.047, respectively, 

providing a CL/CD of 42.517.  The variation of CL, CD  

and CL/CD  with α are shown in Figure 6. It can be clearly 

observed that there was a large performance 

improvement of the optimized shape in comparison with 

the initial one (i.e., CL/CD increased from 39.050 to 

42.517).  

 

 
a) 

 
b) 

Fig. 5. Contours of velocity of the flow around the initial (a) 
and optimized (b) multi-element hydrofoil. 
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Fig. 6. CL/CD ratio as a function of α for a traditional hydrofoil 
and for an optimized multi-element hydrofoil using the Eppler 

420 profile. 
 

4. Conclusion 
 

The design of a multi-element hydrofoil based on SM was 

presented in this study. The use of SM refers to an 

approach that can be employed for the design of 

hydrokinetic turbines, allowing the correction of a multi-

element hydrofoil shape, aiming at preventing cavitation. 
In this study, the objective was to maximize CL and 

minimize CD subjected to Cpre < 4 constraint. The results 

showed that the improvement of CL/CD is significant 

compared to the conventional hydrofoil. The multi-

element hydrofoil had a CL/CD of 8.87 % larger than that 

of the traditional hydrofoil.  

 

The design of the optimal hydrofoil for hydrokinetic 

appliances always requires an amount of time experiments 

and computational analysis in order to achieve the planned 

goals. In this work, the SM allowed reducing the time of 
multi-element hydrofoil design process involved in the 

blade manufacture of a horizontal axis hydrokinetic 

turbine due to the reduction iterations number and the CFD 

analysis within the optimization procedure.  
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